精英家教网 > 初中数学 > 题目详情

【题目】如图,已知△ABC的三个顶点的坐标分别为A(﹣23)、B(﹣60)、C(﹣10).

1)画出△ABC关于原点成中心对称的三角形△ABC′;

2)将△ABC绕坐标原点O逆时针旋转90°,画出图形,直接写出点B的对应点B″的坐标;

3)请直接写出:以ABC为顶点的平行四边形的第四个顶点D的坐标.

【答案】1)图略;(2)图略,点B″的坐标为(0,﹣6);(3)点D坐标为(﹣73)或(33)或(﹣5,﹣3).

【解析】

1)根据网格结构找出点ABC关于原点对称的点A′B′C′的位置,然后顺次连接即可;
2)根据网格结构找出点ABC绕坐标原点O逆时针旋转90°的对应点的位置,然后顺次连接即可,再根据平面直角坐标系写出点B的对应点的坐标;
3)分ABBCAC是平行四边形的对角线三种情况解答.

解:(1)如图所示A′B′C′即为所求;
2)如图所示,即为所求;

3D-73)或(-5-3)或(33).

当以BC为对角线时,点D3的坐标为(-5-3);
当以AB为对角线时,点D2的坐标为(-73);
当以AC为对角线时,点D1坐标为(33).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线yax2+bx+3x轴于点A(﹣10)和点B30),与y轴交于点C

1)求抛物线的解析式;

2)连接BC,若点P为线段BC上的一个动点(不与点B、点C重合),过点P作直线PNx轴于点N,交抛物线于点M,当△BCM面积最大时,求△BPN的周长.

3)在(2)的条件下,当△BCM面积最大时,在抛物线的对称轴上是否存在点Q,使△CNQ为等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC为⊙O内接等边三角形,将ABC绕圆心O旋转30°DEF处,连接ADAE,则∠EAD的度数为( )

A.150°B.135°C.120°D.105°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙M经过O点,并且与x轴、y轴分别交于AB两点,线段OAOBOAOB)的长是方程的两根.

1)求线段OAOB的长;

2)若点C在劣弧OA,连结BCOAD,当OC2CD·CB时,求点C的坐标;

3)若点C在优弧OA上,作直线BCx轴于D,是否存在COBCDO相似,若存在,求出点C的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】创客联盟的队员想用3D打印完成一幅边长为6米的正方形作品ABCD,设计图案如图所示(四周阴影是四个全等的矩形,用材料甲打印;中心区是正方形MNPQ,用材料乙打印).在打印厚度保持相同的情况下,两种材料的消耗成本如下表:

材料

价格(元/2

80

50

设矩形的较短边AH的长为x米,打印材料的总费用为y元.

1MQ的长为   米(用含x的代数式表示);

2)求y关于x的函数解析式;

3)当中心区的边长不小于2米时,预备材料的购买资金2800元够用吗?请利用函数的增减性来说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.

(1)以直线BC为轴,把△ABC旋转一周,求所得圆锥的底面圆周长

(2)以直线AC为轴,把△ABC旋转一周,求所得圆锥的侧面积;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如右图,正方形ABCD的边长为2,点EBC边上一点,以AB为直径在正方形内作半圆

O,将△DCE沿DE翻折,点C刚好落在半圆O的点F处,则CE的长为( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△ABC中,∠ABC90°,将△ABC绕点B逆时针旋转90°后,点A的对应点为点D,点C的对应点为点E,直线DE与直线AC交于点F,连接FB

1)如图1,当∠BAC45°时,

①求证:DFAC

②求∠DFB的度数;

2)如图2,当∠BAC45°时,

①请依题意补全图2

②用等式表示线段FCFBFE之间的数量关系,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,平行四边形ABCD中,AB⊥ACAB=1,BC=,对角线ACBD交于O点,将直线AC绕点O顺时针旋转,分别交BCAD于点EF

1)求证:当旋转角为90°时,四边形ABEF是平行四边形;

2)在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;如能,说明理由并求出此时AC绕点O顺时针旋转的度数.

查看答案和解析>>

同步练习册答案