【题目】在平面直角坐标系xOy中,已知点A(-2,0),B(2,0),点P在直线上,若△ABP是直角三角形,则点P的坐标为______________.
【答案】(1,),(-1,-),(2,),(-2,-)
【解析】
设P点的坐标是(x,x)有三种类型:①∠APB=90°,②∠PAB=90°,③∠ABP=90°,根据点的坐标和勾股定理求出x即可.
∵点P在直线y=x上,
∴设P点的坐标是(x,x)
有三种类型:
①如图1,当∠APB=90°时,
∵A(-2,0),B(2,0),P(x,x),
∴由勾股定理得:AP2+BP2=AB2,
即(-2-x)2+(0-x)2+(x-2)2+(x-0)2=(2+2)2,
解得:x=±1,
即此时点P的坐标是(1,)或(-1,-);
②如图2,当∠PAB=90°时,
∵A(-2,0),B(2,0),P(x,x),
∴P点的横坐标是-2,纵坐标是-2,即点P的坐标是(-2,-2);
③当∠ABP=90°时,
点P的坐标是(2,2),
故答案为:(1,)或(-1,-)或(-2,-2)或(2,2).
科目:初中数学 来源: 题型:
【题目】A,B两城相距600千米,甲、乙两车同时从A城出发驶向B城,甲车到达B城后立即返回.如图是它们离A城的距离y(千米)与行驶时间 x(小时)之间的函数图象.
(1)求甲车行驶过程中y与x之间的函数解析式,并写出自变量x的取值范围;
(2)当它们行驶了7小时时,两车相遇,求乙车的速度及乙车行驶过程中y与x之间的函数解析式,并写出自变量x的取值范围;
(3)当两车相距100千米时,求甲车行驶的时间.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】金佛山是巴蜀四大名山之一游客上金佛山有两种方式:一种是从西坡上山,如图,先从A沿登山步道走到点B,再沿索道乘坐缆车到点C;另一种是从北坡景区沿着盘山公路开车上山到点C.已知在点A处观测点C,得仰角∠CAD=37°,且A、B的水平距离AE=1000米,索道BC的坡度i=1:,长度为2600米,CD⊥AD于点D,BF⊥CD于点F则BE的高度为(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°=0.75,=1.73)( )
A.2436.8米B.2249.6米C.1036.8米D.1136.8米
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(﹣1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.
(1)求抛物线的解析式;
(2)求△MCB的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于任意的实数m,n,定义运算“∧”,有m∧n=.
(1)计算:3∧(-1);
(2)若,,求m∧n (用含x的式子表示);
(3)若,, m∧n=-2 ,求x的值 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线经过点和.下列结论:①;②;③当时,抛物线与轴必有一个交点在点的右侧;④抛物线的对称轴为.
其中结论正确的个数有( )
A.4个B.3个C.2个D.1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线过点,且与直线交于B、C两点,点B的坐标为.
(1)求抛物线的解析式;
(2)点D为抛物线上位于直线上方的一点,过点D作轴交直线于点E,点P为对称轴上一动点,当线段的长度最大时,求的最小值;
(3)设点M为抛物线的顶点,在y轴上是否存在点Q,使?若存在,求点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com