分析 (1)作BH⊥OA于H,根据矩形的性质求出OH的长,根据勾股定理求出BH的长,得到点B的坐标;
(2)作EG⊥OA于G,得到△OGE∽△OHB,根据题意和相似三角形的性质求出点E、D的坐标,运用待定系数法求出直线DE的解析式;
(3)作MP⊥y轴于点P,得到△MPD∽△FOD,根据相似三角形的性质和勾股定理计算即可.
解答
解:如图1,作BH⊥OA于H,则四边形OHBC为矩形,
∴OH=CB=3,
∴AH=OA-OH=3,
∴BH=$\sqrt{B{A}^{2}-A{H}^{2}}$=6,
∴点B的坐标为(3,6);
(2)如图1,作EG⊥OA于G,则EG∥BH,
∴△OGE∽△OHB,
∴$\frac{OE}{OB}$=$\frac{OG}{OH}$=$\frac{EG}{BH}$,
∵OE=2EB,
∴$\frac{OE}{OB}$=$\frac{2}{3}$,又OH=3,BH=6,
∴OG=2,EG=4,
∴点E的坐标为(2,4),
∵OC=BH=6,OD=5,
∴点D的坐标为(0,5),
设直线DE的解析式为y=kx+b,
∴$\left\{\begin{array}{l}{2k+b=4}\\{b=5}\end{array}\right.$,
解得,$\left\{\begin{array}{l}{k=-\frac{1}{2}}\\{b=5}\end{array}\right.$,
∴直线DE的解析式为y=-$\frac{1}{2}$x+5;
(3)
如图2,作MP⊥y轴于点P,
∵四边形ODMN是菱形,
∴DM=MN=NO=OD=5,
∵MP∥OA,
∴△MPD∽△FOD,
∴$\frac{MP}{OF}$=$\frac{MD}{DF}$=$\frac{PD}{OD}$,
当y=0,即-$\frac{1}{2}$x+5=0时,x=10,
∴点F的坐标为(0,10),
∴DF=$\sqrt{O{D}^{2}+O{F}^{2}}$=5$\sqrt{5}$,
∴$\frac{MP}{10}$=$\frac{PD}{5}$=$\frac{5}{5\sqrt{5}}$,
解得,MP=2$\sqrt{5}$,PD=$\sqrt{5}$,
∴OP=5+$\sqrt{5}$,
∴N的坐标为(-2$\sqrt{5}$,$\sqrt{5}$).
点评 本题考查的是一次函数知识的综合运用,掌握矩形的性质定理、菱形的性质定理、相似三角形的判定和性质定理以及待定系数法求函数解析式的步骤是解题的关键.
科目:初中数学 来源: 题型:选择题
| A. | B. | C. | D. |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 3x-1=4x+2 | B. | 3x+1=4x-2 | C. | $\frac{x-1}{3}$=$\frac{x+2}{4}$ | D. | $\frac{x+1}{3}$=$\frac{x-2}{4}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com