精英家教网 > 初中数学 > 题目详情
4.用十字相乘法因式分解:3x2+5xy-2y2

分析 ax2+bx+c(a≠0)型的式子的因式分解这种方法的关键是把二次项系数a分解成两个因数a1,a2的积a1•a2,把常数项c分解成两个因数c1,c2的积c1•c2,并使a1c2+a2c1正好是一次项b,那么可以直接写成结果:ax2+bx+c=(a1x+c1)(a2x+c2).

解答 解:原式=(x+2y)(3x-y).

点评 本题考查十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

14.如图,某电信公司提供了A,B两种方案的移动通讯费用y(元)与通话时间x(分)之间的关系,下列四种结论:
①若通话时间少于120分,则A方案比B方案便宜20元;
②若通话时间超过200分,则B方案比A方案便宜12元;
③若通讯费用为0元,则B案比A方案的通话时间多;
④若两种方案通讯费用相差10元,则通话时间是145分或185分.
其中正确的结论是①②③.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,BD,AE是钝角三角形ABC的两条高,M,N分别是AB,DE的中点,求证:MN⊥DE.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.要使$\frac{2}{x-1}$的值比$\frac{x}{2-x}$的值多1,则x应取1.5.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.在矩形ABCD中,AB=1,BC=2,对角线AC、BD相交于点O,点A绕点O按顺时针方向旋转到A′,旋转角为α(0°<α<∠AOD),连接A′C.
(1)如图①,则△AA′C的形状是直角三角形;
(2)如图②,当∠α=60°,求A′C长度;
(3)如图③,当∠α=∠AOB时,求证:A′D∥AC.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.当x取什么整数时,能使分式$\frac{{x}^{4}+{x}^{3}-2}{{x}^{3}-{x}^{2}+x-1}$•$\frac{{x}^{4}-1}{{x}^{3}+2{x}^{2}+2x+2}$÷$\frac{{x}^{3}-x-{x}^{2}+1}{-2}$的值为正整数?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.解方程:(x-35)(x+3)+(x-2)(x+4)=49.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,BC是半⊙O的直径,点P是半圆弧的中点,点A是弧BP的中点,AD⊥BC于D,连结AB、PB、AC,BP分别与AD、AC相交于点E、F.
(1)求证:AE=BE;
(2)判断BE与EF是否相等吗,并说明理由;
(3)小李通过操作发现CF=2AB,请问小李的发现是否正确?若正确,请说明理由;若不正确,请写出CF与AB正确的关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.解方程:
(1)(40-2x)(26-x)=144×6;
(2)(x-120)[120-(x-120)]=3200;
(3)x2+(x+2)2=3(x-2)2-25;
(4)200(1+x%)×150(1-$\frac{10}{9}$x%)=20000.

查看答案和解析>>

同步练习册答案