精英家教网 > 初中数学 > 题目详情

【题目】如图∠BAC=30°,D 为角平分线上一点,DEAC E,DFAC且交ABF.

(1)求证:ADF 是等腰三角形.

(2) DF=10cm,求 DE的长.

【答案】(1)证明见解析;(2)5cm.

【解析】

(1)根据角平分线的定义、平行线的性质、等腰三角形的判定定理证明;
(2)作DH⊥ABH,根据直角三角形的性质求出BH,根据角平分线的性质定理解答.

(1)证明:∵∠BAC=30°,D为角平分线上一点,

∴∠BAD=CAD,

DFAC,

∴∠CAD=FDA,

∴∠BAD=FDA,

FA=FD,即△ADF是等腰三角形;

(2)解:作DHABH,

DFAC,

∴∠BFD=BAC=30°,

DH=DF=5,

D为角平分线上一点,DEAC,DHAB,

DE=DH=5cm.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】有两个内角分别是它们对角的一半的四边形叫做半对角四边形.
(1)如图1,在半对角四边形ABCD中,∠B= ∠D,∠C= ∠A,求∠B与∠C的度数之和;

(2)如图2,锐角△ABC内接于⊙O,若边AB上存在一点D,使得BD=BO.∠OBA的平分线交OA于点E,连结DE并延长交AC于点F,∠AFE=2∠EAF.

求证:四边形DBCF是半对角四边形;
(3)如图3,在(2)的条件下,过点D作DG⊥OB于点H,交BC于点G.当DH=BG时,求△BGH与△ABC的面积之比.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知 A,B,C 三点都在直线l 上,AC 与 BC 的长度之比为 2:3,D 是 AB 的中点.若 AC4cm,则 CD 的长为 ________________ cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】全球气候变暖导致-些冰川融化并消失在冰川|消失12年后,一种低等植物苔藓,就开始在岩石上生长每一个苔藓都会长成近似的圆形苔藓的直径和其生长年限近似地满足如下的关系式:d=7 (t≥12),其中d表示苔藓的直径,单位是厘米,t代表冰川消失的时间(单位:年)

(1)计算冰川消失16年后苔藓的直径为多少厘米?

(2)如果测得一些苔藓的直径是35厘米,问冰川约是在多少年前消失的?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在5×5的正方形网格中,每个小正方形的边长均为1,线段AB的端点在格点上,按要求画出格点三角形,并求其面积.

(1)在图①中画出一个以 AB为腰的等腰三角形 ABC,其面积为____________.

(2) 在图②中画出一个以AB为底的等腰三角形ABC,其面积为__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,A(1,2),B(3,1),C(﹣2,﹣1).

(1)在图中作出△ABC 关于 y 轴对称的△A1B1C1

(2)A1B1C1 的面积为___________.

(3) x 轴上找出一点P,使PA+PB的值最小直接画出点P的位置.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,点P、Q分别是等边△ABC边AB、BC上的动点(端点除外),点P从顶点A、点Q从顶点B同时出发,且它们的运动速度相同,连接AQ、CP交于点M.

(1)求证:△ABQ≌△CAP;

(2)当点P、Q分别在AB、BC边上运动时,∠QMC变化吗?若变化,请说明理由;若不变,求出它的度数.

(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠QMC变化吗?若变化,请说明理由;若不变,直接写出它的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=kx+b与反比例函数y= 的图象在第一象限交于A、B两点,B点的坐标为(3,2),连接OA、OB,过B作BD⊥y轴,垂足为D,交OA于C,若OC=CA.
(1)求一次函数和反比例函数的表达式;
(2)求△AOB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点P是∠AOB的边OB上的一点,过点POB的垂线,交OA于点C.

(1)过点POA的垂线,垂足为H

(2)线段PH的长度是点P____的距离,____是点C到直线OB的距离.线段PCPHOC这三条线段大小关系是___(“<”号连接)

查看答案和解析>>

同步练习册答案