精英家教网 > 初中数学 > 题目详情

【题目】图①,图②都是由四条边长均为1的小四边形构成的网格,每个小四边形的顶点称为格点.OMNAB均在格点上,请仅用无刻度直尺在网格中完成下列画图(保留连线痕迹).

1)在图①中,画出OMPONP,要求点P在格点上.

2)在图②中,画一个RtABC,∠ACB=90°,要求点C在格点上.

【答案】见解析.

【解析】

1)利用菱形网格性质,根据SSS构造全等三角形即可;(2)根据菱形的性质及平行线的性质即可得答案.

1)如图①,由菱形网格性质可知PM=PNOM=ON

又∵OP=OP

∴△OMP≌△ONP

∴△OMP和△ONP即为所求.

如图②,∵CEBF是菱形,

BCEF

由菱形网格可知AC//EF

ACBC

∴∠ACB=90°.

∴点C即为所求.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】拓展与探索:如图,在正△ABC中,点EAC上,点DBC的延长线上.

(1)如图1AEECCD,求证:BEED

(2)如图2,若EAC上异于AC的任一点,AECD(1)中结论是否仍然成立?为什么?

(3)EAC延长线上一点,且AECD,试探索BEED间的数量关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=AC=12cmBC=9cm,点DAB的中点.

1)如果点P在线段BC上以3厘米/秒的速度由BC点运动,同时点Q在线段CA上由C点向A点运动.

①若点Q的运动速度与点P的运动速度相等,当经过1秒时,BPDCQP是否全等,请判断并说明理由;

②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使BPD≌△CPQ

2)若点Q以②的运动速度从点C出发,点P以原来运动速度从点B同时出发,都逆时针沿ABC的三边运动,求经过多长时间,点P与点Q第一次在ABC的哪条边上会相遇?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题情境:如图①,在ABDCAE中,BD=AEDBA=EACAB=AC,易证:ABD≌△CAE.(不需要证明)

特例探究:如图②,在等边ABC中,点DE分别在边BCAB上,且BD=AEADCE交于点F.求证:ABD≌△CAE

归纳证明:如图③,在等边ABC中,点DE分别在边CBBA的延长线上,且BD=AEABDCAE是否全等?如果全等,请证明;如果不全等,请说明理由.

拓展应用:如图④,在等腰三角形中,AB=AC,点OAB边的垂直平分线与AC的交点,点DE分别在OBBA的延长线上.若BD=AEBAC=50°,AEC=32°,求∠BAD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,点为二次函数图象的顶点,直线分别交轴正半轴,轴于点.

(1)判断顶点是否在直线上,并说明理由.

(2)如图1,若二次函数图象也经过点,且,根据图象,写出的取值范围.

(3)如图2,点坐标为,点内,若点都在二次函数图象上,试比较的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(实验操作)如图①,在中,,现将边沿的平分线翻折,点落在边的点处;再将线段沿翻折到线段,连接.

(探究发现)若点三点共线,则的大小是______的大小是________,此时三条线段之间的数量关系是________.

(应用拓展)如图②,将图①中满足(实验操作)与(探究发现)的的边延长至,使得,连接,直接写出的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O于点D,DEBC于点E.

(1)试判断DE与⊙O的位置关系,并说明理由;

(2)过点DDFAB于点F,若BE=3,DF=3,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】家用电灭蚊器的发热部分使用了PTC发热材料,它的电阻R(kΩ)随温度t(℃)(在一定范围内)变化的大致图象如图所示.通电后,发热材料的温度在由室温10℃上升到30℃的过程中,电阻与温度成反例关系,且在温度达到30℃时,电阻下降到最小值;随后电阻承温度升高而增加,温度每上升1℃,电阻增加kΩ.

(1)求Rt之间的关系式;

(2)家用电灭蚊器在使用过程中,温度在什么范围内时,发热材料的电阻不超过4kΩ.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,∠1=∠2,AEOBEBDOAD,交点为C,则图中全等三角形共有( )

A. 2对 B. 3对 C. 4对 D. 5对

查看答案和解析>>

同步练习册答案