精英家教网 > 初中数学 > 题目详情

【题目】两条抛物线的顶点相同.

1)求抛物线的解析式;

2)点是抛物找在第四象限内图象上的一动点,过点轴,为垂足,求的最大值;

3)设抛物线的顶点为点,点的坐标为,问在的对称轴上是否存在点,使线段绕点顺时针旋转90°得到线段,且点恰好落在抛物线上?若存在,求出点的坐标;若不存在,请说明理由.

【答案】1;(2的最大值为;(3.

【解析】

1)先求得顶点坐标,然后依据两个抛物线的顶点坐标相同可求得mn的值;

2)作轴,设,得到a的函数关系式,即可解答;

3)过点于点.接下来分情况讨论①当点在顶点的下方时,可得;②当点在顶点的上方时,可得

1的顶点为

∵抛物线的顶点相同

2)作轴,

在第四象限

的最大值为

3)假设的对称轴上存在点

过点于点

①当点在顶点的下方时,

,抛物线的对称轴为

设点

可知

②当点在顶点的上方时,同理可得

综上所述:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,的直径,点的中点,的弦,且,垂足为,连接于点,连接

(1)求证:

(2),求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB=1,AD=2,点E是边AD上的一个动点,把△BAE沿BE折叠,点A落在A′处,如果A′恰在矩形的对称轴上,则AE的长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠C=90°,AC=BC=3cm.动点P从点A出发,以cm/s的速度沿AB方向运动到点B.动点Q同时从点A出发,以1cm/s的速度沿折线ACCB方向运动到点B.APQ的面积为y(cm2).运动时间为x(s),则下列图象能反映yx之间关系的是 ( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△ABC的一条边BC的长为5,另两边AB,AC的长分别为关于x的一元二次方程的两个实数根。

1)求证:无论k为何值,方程总有两个不相等的实数根;

2)当k=2时,请判断△ABC的形状并说明理由;

3k为何值时,△ABC是等腰三角形,并求△ABC的周长。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于的方程有两个不相等的实数根

的取值范围.

是否存在实数,使方程的两实数根互为相反数?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有这样一个问题:探究函数的图象与性质.小东根据学习函数的经验,对函数的图象与性质进行了探究.下面是小东的探究过程,请补充完整:

(1)函数的自变量x的取值范围是

(2)下表是xy的几组对应值.

...

1

2

3

...

...

m

...

m的值;

(3)如图,在平面直角坐标系中,已描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;

(4)进一步探究发现,该函数图象在第一象限内的最低点的坐标是(1,).结合函数的图象,写出该函数的其它性质(写两条即可).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将ABC绕着点C顺时针旋转50°后得到ABC.若=40°,=110°,则∠的度数为________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图抛物线yax2+bx+cy轴交于点C,与x轴交于AB两点,点A在点B左侧.点A的坐标为(﹣40),B的坐标为(10),且OC4OB

1)求抛物线的解析式;

2)若点D是线段AC下方抛物线上的动点,求三角形ACD面积的最大值;

3)若点Ex轴上,点P在抛物线上.是否存在以ACEP为顶点且以AC为一边的平行四边形?若存在,直接写出P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案