【题目】如图,在中,,于点,于点,与交于点,于点,点是的中点,连接并延长交于点.
(1)如图①所示,若,求证:;
(2)如图②所示,若,如图③所示,若(点与点重合),猜想线段、与之间又有怎样的数量关系?请直接写出你的猜想,不需证明.
【答案】(1)见解析(2)
【解析】
(1)连接CF,由垂心的性质得出CF⊥AB,证出CF∥BH,由平行线的性质得出∠CBH=∠BCF,证明△BMH≌△CMF得出BH=CF,由线段垂直平分线的性质得出AF=CF,得出BH=AF,AD=DF+AF=DF+BH,由直角三角形的性质得出AD=BD,即可得出结论;
(2)同(1)可证:AD=DF+AF=DF+BH,再由等腰直角三角形的性质和含30°角的直角三角形的性质即可得出结论.
(1)证明:连接,如图①所示:
, ,
,
,
,
,
点是的中点,
,
在和中,,
,
,
,,
垂直平分,
,
,
,
在中,,
,
;
(2)解:图②猜想结论:;理由如下:
同(1)可证: ,
在中,,
,
;
图③猜想结论:;理由如下:
同(1)可证:,
在中,,
,
.
科目:初中数学 来源: 题型:
【题目】为了对学生进行革命传统教育,红旗中学开展了“清明节祭扫”活动.全校学生从学校同时出发,步行米到达烈士纪念馆.学校要求九班提前到达目的地,做好活动的准备工作.行走过程中,九(1)班步行的平均速度是其他班的倍,结果比其他班提前分钟到达.分别求九(1)班、其他班步行的平均速度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在平面直角坐标系中,矩形ABOC的边BO在x轴的负半轴上,边OC在y轴的正半轴上,且AB=1,OB=,矩形ABOC绕点O按顺时针方向旋转60°后得到矩形EFOD.点A的对应点为点E,点B的对应点为点F,点C的对应点为点D,抛物线y=ax2+bx+c过点A,E,D.
(1)判断点E是否在y轴上,并说明理由;
(2)求抛物线的函数表达式;
(3)在x轴的上方是否存在点P,点Q,使以点O,B,P,Q为顶点的平行四边形的面积是矩形ABOC面积的2倍,且点P在抛物线上?若存在,请求出点P,点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校组织全校1500名学生进行经典诗词诵背活动,为了解本次系列活动的效果,学校团委在活动开展一个月之后,随机抽取部分学生调查了“一周诗词诵背数量”,并根据调查结果绘制成如下的统计图1和图2.请根据相关信息,解答下列问题:
I.图2中的值为__________;
Ⅱ.求统计的这组数据的平均数、众数和中位数;
Ⅲ.估计此时该校学生一周诗词诵背6首(含6首)以上的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某地的一座人行天桥如图所示,天桥高为6米,坡面的坡度为,文化墙在天桥底部正前方8米处(的长),为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为.(参考数据:,)
(1)若新坡面坡角为,求坡角度数;
(2)有关部门规定,文化墙距天桥底部小于3米时应拆除,天桥改造后,该文化墙是否需要拆除?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=3,BC=4.M、N在对角线AC上,且AM=CN,E、F分别是AD、BC的中点.
(1)求证:△ABM≌△CDN;
(2)点G是对角线AC上的点,∠EGF=90°,求AG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=AC=10,tanA=2,BE⊥AC于点E,D是线段BE上的一个动点,则的最小值是( )
A. B. C. D. 10
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】按要求解答下列各题:
(1)如图①,求作一点,使点到的两边的距离相等,且在的边上.(用直尺和圆规作图,保留作图痕迹,不写作法和证明);
(2)如图②,表示两个港口,港口在港口的正东方向上.海上有一小岛在港口的北偏东方向上,且在港口的北偏西方向上.测得海里,求小岛与港口之间的距离.(结果可保留根号)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com