【题目】如图,点在的边上,过点作的平行线,如果,那么的度数为__________.
【答案】(1)①中线;②是;(2)见解析;(3).
【解析】
(1)①根据中线及二分线的定义即可求解;
②先由AD是BC边上的中线可得S△ABD=S△ACD,再根据可得S四边形ACFE=S△BEF即可求解;
(2)先证△CDG≌△EAG可得S△CDG=S△EAG,再根据F是EB的中点即可求解;
(3)分别证明△AEB≌△CDE,△AEB≌△EBH,△MHB≌△MAE,然后得出S△MHB=S△MAE,再根据全等三角形的性质及二分线定义即可求解.
(1)①三角形的中线、高线、角平分线中,一定是三角形的二分线的是中线,
故答案为中线;
②∵AD是BC边上的中线,
∴S△ABD=S△ACD,
又∵,
∴S四边形BEGD=S四边形AGFC,
∴S四边形BEGD+=S四边形AGFC+,
∴=S四边形AEFC,
所以EF是△ABC的一条二分线,故答案为是;
(2)∵点G是AD的中点,
∴GD=AG,
∵AB∥DC,
∴∠D=∠GAE,
在△CDG和△EAG中,
,
∴△CDG≌△EAG(ASA),
∴S△CDG=S△EAG,
∵点F是EB的中点,
∴S△CFE=S△CBF,
即S△AGE+S四边形AGCF=S△CBF,
∴S△CDG+S四边形AGCF=S△CBF,即S四边形ADCF=S△CBF,
∴CF是四边形ABCD的二分线;
(3)如图,延长CB于点H,使得BH=AE,连接EH交AB于点M,
,
∵AB=BC,
∴∠A=∠C,
∵∠BED=∠A,
∴∠AEB=∠CDE,
在△AEB和△CDE中,
,
∴△AEB≌△CDE(AAS),
∴AE=CD,
∴BH=CD,
∴DH=CB,
∵CB=CE,
∴∠CBE=∠CEB,
∴∠HBE=∠AEB,
在△EBH和△BEA中,
,
∴△AEB≌△EBH(SAS),
∴∠H=∠A,
在△MBH和△MEA中,
,
∴△MHB≌△MAE(ASA),
∴S△HMB+S四边形MBFE=S△AME+S四边形MBFE,即S△HEF=S四边形ABFE,
∵EF是四边形ABDE的一条二分线,
∴S四边形ABFE=S△DEF,
∴S△HEF=S△DEF,
∴DF=DH=CB=.
科目:初中数学 来源: 题型:
【题目】如图,锐角△ABC的两条高BE、CD相交于点O,且OB=OC,∠A=60°.
(1)求证:△ABC是等边三角形;
(2)判断点O是否在∠BAC的平分线上,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两名运动员同时从A地出发到B地,在直线公路上进行骑自行车训练.如图,反映了甲、乙两名自行车运动员在公路上进行训练时的行驶路程S(千米)与行驶时间t(小时)之间的关系,下列四种说法:①甲的速度为40千米/小时;②乙的速度始终为50千米/小时;③行驶1小时时,乙在甲前10千米;④甲、乙两名运动员相距5千米时,t=0.5或t=2或t=5.其中正确的个数有( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某单位计划在新年期间组织员工到某地旅游,参加旅游的人数估计为10到25人,甲乙两家旅行社的服务质量相同,且报价都是每人200元,经过协商,甲旅行社表示可以给每位游客七五折优惠,乙旅行社表示可以先免去一位游客的旅游费用,然后给予其余游客八折优惠.若单位参加旅游的人数为x人,甲乙两家旅行社所需的费用分别为y1和y2.
(1)写出y1,y2与x的函数关系式并在所给的坐标系中画出y1,y2的草图;
(2)根据图像回答,该单位选择哪家旅行社所需的费用最少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示为一个计算程序;
(1)若输入的x=3,则输出的结果为 ;
(2)若开始输入的x为正整数,最后输出的结果为40,则满足条件的x的不同值最多有 ;
(3)规定:程序运行到“判断结果是否大于30”为一次运算.若运算进行了三次才输出,求x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:sin(﹣x)=﹣sinx, cos(﹣x)=cosx,sin(x+y)=sinxcosy+cosxsiny,则下列各式不成立的是( )
A. cos(﹣45°)= B. sin75°=
C. sin2x=2sinxcosx D. sin(x﹣y)=sinxcosy﹣cosxsiny
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD的中点延长AE至G,使EG=AE,连接CG.
(1)求证:△ABE≌△CDF;
(2)当AB=AC时,判断四边形EGCF是什么形状?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】【问题情境】
已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?
【数学模型】
设该矩形的长为x,周长为y,则y与x的函数表达式为y=2(x+ )(x>0).
【探索研究】
小彬借鉴以前研究函数的经验,先探索函数y=x+的图象性质.
(1)结合问题情境,函数y=x+ 的自变量x的取值范围是x>0,下表是y与x的几组对应值.
① 写出m的值;
②画出该函数图象,结合图象,得出当x=________时,y有最小值,y最小=________;
提示:在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.试用配方法求函数y=x+ (x>0)的最小值,解决问题(2).
(2)【解决问题】
直接写出“问题情境”中问题的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在△ABC中,点A1,B1,C1分别是BC、AC、AB的中点,A2,B2,C2分别是B1C1,A1C1,A1B1的中点,依此类推….若△ABC的周长为1,则△AnBnCn的周长为_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com