精英家教网 > 初中数学 > 题目详情

【题目】已知,在Rt△ABC中,∠ACB=90°,BC=4,AB=4,点DAC边上的一个动点,将△ABD沿BD所在直线折叠,使点A落在P处.

(1)如图1,若点DAC中点,连接PC

AC的长;

试猜想四边形BCPD的形状,并加以证明;

(2)如图2,若BDAD,过点PPHBCBC的延长线于点H,求CH的长.

【答案】(1)AC=8,四边形BCPD是平行四边形.理由见解析;(2)CH

【解析】

(1)①根据勾股定理求出AC即可;

②想办法证明DPBC,DP=BC即可;

(2)如图2中,作DNABN,PEACE,延长BDPAM.设BD=AD=x,则CD=8-x,在RtBDC中,可得x2=(8-x)2+42,推出x=5,由ADN∽△ABC,可得,可得推出BN=AN=2,在RtBDN中,DN=,由BDN∽△BAM,可得,可得,推出AM=4,推出AP=2AM=8,由ADM∽△APE,可得,可得,推出AE=,推出PE=,即可解决问题;

(1)①在RtABC中,∵BC=4,AB=4

AC=8,

②如图1中,四边形BCPD是平行四边形.

理由:∵AC=8,ADDC

DCAD=4,

BC=4,

BCCD=4,

∴△BCD是等腰直角三角形,

∴∠BDC=45°,

∴∠ADBBDP=135°,

∴∠PDC=135°﹣45°=90°,

∴∠BCDPDC=90°,

DPBCPDADBC=2,

∴四边形BCPD是平行四边形.

(2)如图2中,作DNABNPEACE,延长BDPAM

BDADx,则CD=8﹣x

RtBDC中,∵BD2CD2+BC2

x2=(8﹣x2+42

x=5,

DBDADNAB

ADN∽△ABC,可得

BNAN=2

RtBDN中,DN

BDN∽△BAM,可得

AM=4,

AP=2AM=8,

ADM∽△APE,可得

AE

PE

易证四边形PECH是矩形,

CHPE

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCB1中,AB=1,AB与直线l的夹角为30°,延长CB1交直线l于点A1,作正方形A1B1C1B2,延长C1B2交直线l于点A2,作正方形A2B2C2B3,延长C2B3交直线l于点A3,作正方形A3B3C3B4,…,依此规律,则A2016A2017=__

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O是△ABC的外接圆,C是优弧AB上一点,设∠OAB=α,∠C=β.

(1)当β=36°时,求α的度数;

(2)猜想α与β之间的关系,并给予证明.

(3)若点C平分优弧AB,且BC2=3OA2 ,试求α的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程x2﹣(k+1)x+2k﹣2=0.

(1)求证:此方程总有两个实数根;

(2)若此方程有一个根大于0且小于1,求k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在以O为原点的直角坐标系中,点AC分别在x轴、y轴的正半轴上,点B在第一象限内,四边形OABC是矩形,反比例函数yx>0)与AB相交于点D,与BC相交于点E,若BE=4CE,四边形ODBE的面积是8,则k_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,线段AB是圆O的直径,弦CDAB于点H,点M是弧CBD上任意一点,AH=4,CD=16.

(1)求圆O的半径r的长度;

(2)求tan∠CMD

(3)如图2,直径BM交直线CD于点E,直线MH交圆O于点N,连接BNCE于点F,求HEHF的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一张半径为2的半圆图纸沿它的一条弦折叠,使其弧与直径相切,如图所示,O为半圆圆心,如果切点分直径之比为3:1,则折痕长为(  )

A. 3 B. C. D. 2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=x2+bx+cx轴交于A,B两点,与y轴交于C点,连接AC,A(3,0),AC=3

(1)求抛物线的函数解析式,并直接写出顶点坐标;

(2)P是第四象限内抛物线上一点,过点PPQACQ,直接写出当线段PQ长度最大时,点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数

(1)该二次函数图象的对称轴是;

(2)若该二次函数的图象开口向上,当时,函数图象的最高点为,最低点为,点的纵坐标为,求点和点的坐标;

(3)对于该二次函数图象上的两点,设,当时,均有,请结合图象,直接写出的取值范围.

查看答案和解析>>

同步练习册答案