精英家教网 > 初中数学 > 题目详情

【题目】已知二次函数

(1)该二次函数图象的对称轴是;

(2)若该二次函数的图象开口向上,当时,函数图象的最高点为,最低点为,点的纵坐标为,求点和点的坐标;

(3)对于该二次函数图象上的两点,设,当时,均有,请结合图象,直接写出的取值范围.

【答案】(1)x=1;(2),;(3)

【解析】

(1)二次函数的对称轴为直线x=-,带入即可求出对称轴,

(2)在区间内发现能够取到函数的最低点,即为顶点坐标,当开口向上是,距离对称轴越远,函数值越大,所以当x=5时,函数有最大值.

(3)分类讨论,当二次函数开口向上时不满足条件,所以函数图像开口只能向下,且应该介于-1和3之间,才会使,解不等式组即可.

(1)该二次函数图象的对称轴是直线

(2)∵该二次函数的图象开口向上,对称轴为直线

∴当时,的值最大,即

代入,解得

∴该二次函数的表达式为

时,

(3)易知a0,

时,均有

,解得

的取值范围

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知,在Rt△ABC中,∠ACB=90°,BC=4,AB=4,点DAC边上的一个动点,将△ABD沿BD所在直线折叠,使点A落在P处.

(1)如图1,若点DAC中点,连接PC

AC的长;

试猜想四边形BCPD的形状,并加以证明;

(2)如图2,若BDAD,过点PPHBCBC的延长线于点H,求CH的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图, 四边形OABC为直角梯形,A(4,0),B(3,4),C(0,4). 点 出发以每秒2个单位长度的速度向运动;点同时出发,以每秒1个单位长度的速度向运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点垂直轴于点,连结AC交NP于Q,连结MQ.

【1】 (填M或N)能到达终点;

【1】求△AQM的面积S与运动时间t的函数关系式,并写出自变量t的取值范围,当t为何值时,S的值最大;

【1】是否存在点M,使得△AQM为直角三角形?若存在,求出点M的坐标,若不存在,

说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A,B,C在⊙O上,若∠BAC=45°,OB=2,则图中阴影部分的面积为( )

A. π-4 B. π-1 C. π-2 D. -2

【答案】C

【解析】试题解析:∵∠BAC=45°,

∴∠BOC=90°,

∴△OBC是等腰直角三角形,

OB=2,

∴△OBCBC边上的高为:OB=

BC=2

S阴影=S扇形OBC﹣SOBC=.

故选C.

型】单选题
束】
10

【题目】夏季的一天,身高为1.6m的小玲想测量一下屋前大树的高度,她沿着树影BA由B到A走去,当走到C点时,她的影子顶端正好与树的影子顶端重合,测得BC=3.2m,CA=0.8m,于是得出树的高度为(  )

A.8m B.6.4m C.4.8m D.10m

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读新知:化简后,一般形式为ax4+bx2+c=0(a≠0)的方程,由于其具有只含有未知数偶次项的四次方程,我们称其为双二次方程.这类方程我们一般可以通过换元法求解:求解2x4-5x2+3=0的解

解:设则原方程可化为解之得

综上,原方程的解为.

(1)通过上述阅读,请你求出方程的解;

(2)判断双二次方程ax4+bx2+c=0(a≠0)根的情况下列说法正确的是 选出正确的答案).

①当b2-4ac≥0时,原方程一定有实数根;

②当b2-4ac<0时,原方程一定没有实数根;

③原方程无实数根时,一定有b2-4ac<0.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】学生甲与乙学习概率初步知识后设计了如下游戏:甲手中有 三张扑克牌,乙手中有 三张扑克牌,每局比赛时,两人从各自手中随机取一张牌进行比较,数字大的则本局获胜.

(1)若每人随机取出手中的一张牌进行比较,请列举出所有情况;

(2)求学生乙一局比赛获胜的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,利用一面墙(墙的长度不超过45m),用80m长的篱笆围一个矩形场地.

(1)怎样围才能使矩形场地的面积为750m2

(2)能否使所围矩形场地的面积为810m2 ,为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程x2-(3k+1)x+2k2+2k=0.

(1)求证:无论k取何实数值,方程总有实数根;

(2)若等腰△ABC的一边长a=6,另两边长b、c恰好是这个方程的两个根,求此三角形的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明和小亮分别从同一直线跑道AB两端同时相向匀速出发,小明和小亮第一次相遇后,小明觉得自己速度太慢便提速至原速的倍,并匀速运动达到B端,且小明到达B端后停止运动,小亮匀速跑步到达A端后,立即按原速返回B端(忽略调头时间),回到B端后停止运动,已知两人相距的路程S(千米)与小亮出发时间t(秒)之间的关系如图所示,则当小明到达B端后,经过_____秒,小亮回到B端.

查看答案和解析>>

同步练习册答案