【题目】如图,在△ABC中,点D是BC的中点,点F是AD的中点,过点D作DE∥AC,交CF的延长线于点E,连接BE,AE.
(1)求证:四边形ACDE是平行四边形;
(2)若AB=AC,试判断四边形ADBE的形状,并证明你的结论.
【答案】见试题解析
【解析】
试题分析:(1)首先证明△AFC≌△DFE,根据全等三角形对应边相等可得AC=DE,再根据一组对边平行且相等的四边形是平行四边形可得结论;
(2)首先证明四边形ADBE为平行四边形,再根据等腰三角形的性质可得AD⊥CB,进而可得四边形ADBE为矩形.
试题解析:(1)证明:∵DE∥AC,
∴∠CAF=∠EDF,
∵点F是AD的中点,
∴FA=DF,
在△AFC和△DFE中
∴△AFC≌△DFE(ASA),
∴AC=DE,
∴四边形ACDE是平行四边形;
(2)解:四边形ADBE为矩形,理由如下:
∵四边形ACDE是平行四边形,
∴AE=CD且AE∥CB,
∵点D是BC的中点,
∴CD=DB,
∴AE=BD且AE∥DB,
∴四边形ADBE为平行四边形,
又∵AB=AC,
∴AD⊥CB,
∴∠ADB=90°,
∴四边形ADBE为矩形.
科目:初中数学 来源: 题型:
【题目】下列说法中正确的是( ).
A.“打开电视机,正在播放《动物世界》”是必然事件
B.某种彩票的中奖概率为 ,说明每买1000张,一定有一张中奖
C.抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为
D.想了解长沙市所有城镇居民的人均年收入水平,宜采用抽样调查
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】函数y= 与y=m﹣x的图象的一个交点是A(2,3),其中k、m为常数.
(1)求k、m的值,画出函数的草图.
(2)根据图象,确定自变量x的取值范围,使一次函数的函数值大于反比例函数的函数值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把正整数1,2,3,4,2016排列成如图所示的形式.
(1)用一个矩形随意框住4个数,把其中最小的数记为,另三个数用含式子表示出来,当被框住的4个数之和等于418时,值是多少?
(2)被框住的4个数之和能否等于724?如果能,请求出此时x值;如果不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在笔直的铁路上A、B两点相距25km,C、D为两村庄,DA=10km,CB=15km,DA⊥AB于A,CB⊥AB于B,现要在AB上建一个中转站E,使得C、D两村到E站的距离相等.求E应建在距A多远处?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲乙两同学用两枚质地均匀的骰子作游戏,规则如下:每人随机掷两枚骰子一次(若掷出的两枚骰子摞在一起,则重掷),点数和大的获胜;点数和相同为平局. 根据上述规则,解答下列问题;
(1)随机掷两枚骰子一次,用列表法求点数和为8的概率;
(2)甲先随机掷两枚骰子一次,点数和是7,求乙随机掷两枚骰子一次获胜的概率. (骰子:六个面分别有1、2、3、4、5、6个小圆点的立方块.点数和:两枚骰子朝上的点数之和)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为开展体育大课间活动,需要购买篮球与足球若干个.已知购买2个篮球和3个足球共需要380元;购买4个篮球和5个足球共需要700元.
(1)求购买一个篮球、一个足球各需多少元;
(2)若体育老师带了8000元去购买这种篮球与足球共100个.由于数量较多,店主给出“一律打九折”的优惠价,那么他最多能购买多少个篮球?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线AB与CD相交于点O,OD恰为∠BOE的平分线.
(1)图中∠BOC的补角是 把符合条件的角都填出来);
(2)若∠AOD=145°,求∠AOE的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,点O为AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的外角平分线CF于点F,交∠ACB内角平分线CE于E.
(1)求证:EO=FO;
(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论;
(3)若AC边上存在点O,使四边形AECF是正方形,猜想△ABC的形状并证明你的结论。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com