【题目】如图,在平面直角坐标系中,两点分别是轴和轴正半轴上两个动点,以三点为顶点的矩形的面积为24,反比例函数(为常数且)的图象与矩形的两边分别交于点.
(1)若且点的横坐标为3.
①点的坐标为 ,点的坐标为 (不需写过程,直接写出结果);
②在轴上是否存在点,使的周长最小?若存在,请求出的周长最小值;若不存在,请说明理由.
(2)连接,在点的运动过程中,的面积会发生变化吗?若变化,请说明理由,若不变,请用含的代数式表示出的面积.
【答案】(1)①点坐标为,点坐标为;②存在,周长;
(2)不变,的面积为
【解析】
(1)①求出点E的坐标,得出C点的纵坐标,根据面积为24即可求出C的坐标,得出F点横坐标即可求解;
②作点E关于x轴的对称点G,连接GF,与x轴的交点为p,此时的周长最小
(2)先算出三角形与三角形的面积,再求出三角形的面积即可.
(1)①点坐标为,点坐标为;
②作点E关于x轴的对称点G,连接GF,求与x轴的交点为p,此时的周长最小
由①得EF=
由对称可得EP=PH,
由 H(3,-4) F(6,2)可得HF=3
△PEF=EP+PF+EF=FH+EF=
(2)不变,求出三角形与三角形的面积为
求出三角形的面积为
求出三角形的面积为
设E位(a, ),则S△AEO=,同理可得S△AFB=,
∵矩形的面积为24
F(,),C(,)
S△CEF=
S=24--k=.
科目:初中数学 来源: 题型:
【题目】如图,边长为2的正方形纸片ABCD中,点M为边CD上一点(不与C,D重合),将△ADM沿AM折叠得到△AME,延长ME交边BC于点N,连结AN.
(1)猜想∠MAN的大小是否变化,并说明理由;
(2)如图1,当N点恰为BC中点时,求DM的长度;
(3)如图2,连结BD,分别交AN,AM于点Q,H.若BQ=,求线段QH的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着互联网的普及,某手机厂商采用先网络预定,然后根据订单量生产手机的方式销售,2015年该厂商将推出一款新手机,根据相关统计数据预测,定价为2200元,日预订量为20000台,若定价每减少100元,则日预订量增加10000台.
(1)设定价减少x元,预订量为y台,写出y与x的函数关系式;
(2)若每台手机的成本是1200元,求所获的利润w(元)与x(元)的函数关系式,并说明当定价为多少时所获利润最大;
(3)若手机加工厂每天最多加工50000台,且每批手机会有5%的故障率,通过计算说明每天最多接受的预订量为多少?按最大量接受预订时,每台售价多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形的对角线交于点,直角三角形绕点按逆时针旋转,
(1)若直角三角形绕点逆时针转动过程中分别交两边于两点
①求证:;
②连接,那么有什么样的关系?试说明理由
(2)若正方形的边长为2,则正方形与两个图形重叠部分的面积为多少?(不需写过程直接写出结果)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本题满分6分)某公司调查某中学学生对其环保产品的了解情况,随机抽取该校部分学生进行问卷,结果分“非常了解”、“比较了解”、“一般了解”、“不了解”四种类型,分别记为A、B、C、D.根据调查结果绘制了如下尚不完整的统计图.
(1)本次问卷共随机调查了 名学生,扇形统计图中m= .
(2)请根据数据信息补全条形统计图;
(3)若该校有1000名学生,估计选择“非常了解”、“比较了解”共约有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算:
有个填写运算符号的游戏:在“”中的每个口内,填入中的某一个(可重复使用),然后计算结果
①算: .
②,请在内直接填出运算符号.
③“”中的口内填入符号后,使计算所得数最小,请在口内直接填出运算符号.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到F,使得EF=BE,连接CF.
(1)求证:四边形BCFE是菱形.
(2)若DE=4cm,∠EBC=60°,求菱形BCFE的面积。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“元旦”期间,某文具店购进100只两种型号的文具进行销售,其进价和售价如下
型号 | 进价(元/只) | 售价(元/只) |
A型 | 10 | 12 |
B型 | 15 | 23 |
(1)该店用1300元可以购进A,B两种型号的文具各多少只?
(2)若把所购进A,B两种型号的文具全部销售完,利润率超过40%没有?请你说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b与反比例函数y=(x>0)的图象交于A(m,6),B(3,n)两点.
(1)求一次函数的解析式;
(2)根据图象直接写出kx+b-<0时x的取值范围;
(3)求△AOB的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com