【题目】如图,△ABC中,AB、AC的垂直平分线分别交BC于点E、F.若△AEF的周长为12cm,则BC的长为____________________cm.若∠EAF=110°,则∠BAC=_____________________.
【答案】12 145°
【解析】
根据垂直平分线的性质可得:BE=AE,CF=AF,从而求出BC=△AEF的周长=12cm,∠EAB=∠B=∠AEF,∠FAC=∠C=∠AFE,然后利用三角形的内角和定理,即可求出∠AEF+∠AFE,从而求出∠B+∠C,最后再利用三角形的内角和定理,即可求出∠BAC.
解:∵AB、AC的垂直平分线分别交BC于点E、F
∴BE=AE,CF=AF
∴BC=BE+EF+CF= AE+EF+AF=△AEF的周长=12cm
∠EAB=∠B=∠AEF,∠FAC=∠C=∠AFE
∵∠EAF=110°
∴∠AEF+∠AFE=180°-∠EAF=70°
∴∠B+∠C=∠AEF+∠AFE=(∠AEF+∠AFE)=35°
∴∠BAC=180°-(∠B+∠C)=145°.
故答案为12;145°.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,二次函数的图象与轴交于、两点,点在原点的左则,点的坐标为,与轴交于点,点是直线下方的抛物线上一动点.
求这个二次函数的表达式;
求出四边形的面积最大时的点坐标和四边形的最大面积;
连结、,在同一平面内把沿轴翻折,得到四边形,是否存在点,使四边形为菱形?若存在,请求出此时点的坐标;若不存在,请说明理由;
在直线找一点,使得为等腰三角形,请直接写出点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线与轴的交点为,与轴的交点分别为,,且,直线轴,在轴上有一动点过点作平行于轴的直线与抛物线、直线的交点分别为、.
求抛物线的解析式;
当时,求面积的最大值;
当时,是否存在点,使以、、为顶点的三角形与相似?若存在,求出此时的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示的“杨辉三角”告诉了我们二项式乘方展开式的系数规律,如:第三行的三个数(1、2、1)恰好对应着(a+b)2的展开式a2+2ab+b2的系数;第四行的四个数恰好对应着(a+b)3=a3+3a2b+3ab2+b3的系数,根据数表中前五行的数字所反映的规律,回答:
(1)图中第六行括号里的数字分别是 ;(请按从左到右的顺序填写)
(2)(a+b)4= ;
(3)利用上面的规律计算求值:()4﹣4×()3+6×()2﹣4×+1.
(4)若(2x﹣1)2018=a1x2018+a2x2017+a3x2016+……+a2017x2+a2018x+a2019,求a1+a2+a3+……+a2017+a2018的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B,F为圆心,大于BF的长为半径画弧,两弧交于一点P,连接AP并延长交BC于点E,连接EF.
(1)根据条件与作图信息知四边形ABEF是
A.非特殊的平行四边形
B.矩形
C.菱形
D.正方形
(2)设AE与BF相交于点O,四边形ABEF的周长为16,BF=4,求AE的长和∠C的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1),已知抛物线E:y=ax2+bx+c与x轴交于A,B(3,0)两点(A在B的左侧),与y轴交于点C(0,3),对称轴为直线x=1.
(1)填空:a= ,b= ,c= ;
(2)将抛物线E向下平移d个单位长度,使平移后所得抛物线的顶点落在△OBC内(包括△OBC的边界),求d的取值范围;
(3)如图(2),设点P是抛物线E上任意一点,点H在直线x=﹣3上,△PBH能否成为以点P为直角顶点的等腰直角三角形?若能,请求出符合条件的点P的坐标;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=(m-1)x+3的图像与x轴的负半轴相交于点A,与y轴相交于点B,且△OAB面积为.
(1)求m的值及点A的坐标;
(2)过点B作直线BP与x轴的正半轴相交于点P,且OP=2OA,求直线BP的函数表达式 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.
(1)求y关于x的函数关系式;
(2)该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?
(3)实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一个不透明的盒子里,装有三个分别写有数字6,﹣2,7的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字.请你用画树形图或列表的方法,求下列事件的概率:
(1)两次取出小球上的数字相同的概率;
(2)两次取出小球上的数字之和大于10的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com