精英家教网 > 初中数学 > 题目详情

【题目】如图,在莲花山滑雪场滑雪,需从山脚下乘缆车上山,缆车索道与水平线所成的角为 32°,缆车速度为每分钟 50 米,从山脚下A 到达山顶 B 缆车需要 16 分钟,则山的高度 BC 约为 ____米.(结果精确到 0.1 米,参考数据:sin32°0.5299 cos32°0.8480tan32°0.6249

【答案】423.9

【解析】

BCAC,垂足为C,在RtABC中,利用三角函数解答即可.

如图,作BCAC,垂足为C


RtABC中,∠ACB=90°
BAC=32°AB=50×16=800(米),
sinBAC=
BC=sinBACAB=800sin32°=800×0.5299≈423.9()
故答案为:423.9

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线轴于点右),交轴于点,直线轴于点,连接

1)求的值;

2)点是第三象限抛物线上的任意一点,设点的横坐标为,连接,若的面积为,求关于的函数解析式(不要求写出自变量的取值范围);

3)在(2)的条件下,连接,当平分时,以线段为边,在上方作等边,过点于点,过点于点,连接,求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有这样一个问题:探究函数的图象与性质.

文文根据学习函数的经验,对函数的图象与性质进行了探究.

下面是文文的探究过程,请补充完整:

1)函数的自变量x的取值范围是__________________

2)下表是yx的几组对应值:

x

0

1

2

3

y

5

1

m的值为____________

3)如图,在平面直角坐标系中,描出以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;

4)请你根据探究二次函数与一元二次方程关系的经验,结合图象直接写出方程的正数根约为____________.(结果精确到0.1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(探究证明)(1)某班数学课题学习小组对矩形内两条互相垂直的线段与矩形两邻边的数量关系进行探究,提出下列问题,请你给出证明:

如图,在矩形ABCD中,EFGHEF分别交ADBC于点EFGH分别交ABDC于点GH,求证:

(结论应用)(2)如图,将矩形ABCD沿EF折叠,使得点B和点D重合,若AB2BC3.求折痕EF的长;

(拓展运用)(3)如图,将矩形ABCD沿EF折叠.使得点D落在AB边上的点G处,点C落在点P处,得到四边形EFPG,若AB2BC3EF,请求BP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2020春节期间,为了进一步做好新型冠状病毒感染的肺炎疫情防控工作,防止新型肺炎外传,切断传播途径.项城市市区各入口一些主要路段均设立了检测点,对出入人员进行登记和体温检测。下图为一关口的警示牌,已知立杆AB高度是3m,从侧面D点测得显示牌顶端C点和底端B点的仰角分别是60°45°.求警示牌BC的高度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两地相距 120 千米,小张骑自行车从甲地出发匀速驶往乙地,出发 a小时开始休息,1 小时后仍按原速继续行驶.小李比小张晚出发一段时间,骑摩托车从乙地匀速驶往甲地,图中折线 CDDEEF,线段 AB 分别表示小张、小李与乙地的距离 y(千米)与小张出发时间 x(小时)之间的函数关系图象.

1)小李到达甲地后,再经过 小时小张到达乙地;小张骑自行车的速度是 千米/时;

2)当 a4 时,求小张与乙地的距离 y 与小张出发的时间 x(小时)之间的函数关系式;

3)若小张恰好在休息期间与小李相遇,请直接写出 a 的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知均是的函数,下表是的几组对应值.

小聪根据学习函数的经验,利用上述表格所反映出的之间的变化规律,分别对函数的图象与性质进行了探究.

下面是小聪的探究过程,请补充完整:

1)如图,在同一平面直角坐标系中,描出上表中各组数值所对应的点,并画出函数的图象;

2)结合画出的函数图象,解决问题:

①当时,对应的函数值约为_________

②写出函数的一条性质:_________________________

③当时,的取值范围是_________________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,轴交于点C,与轴的正半轴交于点K,过点轴交抛物线于另一点B,点轴的负半轴上,连结轴于点A,若

1)用含的代数式表示的长;

2)当时,判断点是否落在抛物线上,并说明理由;

3)过点轴交轴于点延长,使得连结轴于点连结AE轴于点的面积与的面积之比为则求出抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线yax2bx6a≠0)交x轴于点A(60)和点B(10),交y轴于点C

1)求抛物线的解析式和顶点坐标;

2)如图(1),点P是抛物线上位于直线AC上方的动点,过点P分别作x轴,y轴的平行线,交直线AC于点DE,当PDPE取最大值时,求点P的坐标;

3)如图(2),点M为抛物线对称轴l上一点,点N为抛物线上一点,当直线AC垂直平分AMN的边MN时,求点N的坐标.

查看答案和解析>>

同步练习册答案