【题目】(探究证明)(1)某班数学课题学习小组对矩形内两条互相垂直的线段与矩形两邻边的数量关系进行探究,提出下列问题,请你给出证明:
如图①,在矩形ABCD中,EF⊥GH,EF分别交AD、BC于点E、F,GH分别交AB、DC于点G、H,求证:;
(结论应用)(2)如图②,将矩形ABCD沿EF折叠,使得点B和点D重合,若AB=2,BC=3.求折痕EF的长;
(拓展运用)(3)如图③,将矩形ABCD沿EF折叠.使得点D落在AB边上的点G处,点C落在点P处,得到四边形EFPG,若AB=2,BC=3,EF=,请求BP的长.
【答案】(1)见解析;(2)EF=;(3)BP=.
【解析】
(1)过点A作AP∥EF,交BC于P,过点B作BQ∥GH,交CD于Q,如图1,易证AP=EF,GH=BQ,△ABP∽△BCQ,然后运用相似三角形的性质就可解决问题;
(2)连接BD,根据矩形的性质得出BD的长,再根据结论(1)得出,进而可求出EF的长.
(3)过点F作FH⊥EG于H,过点P作PJ⊥BF于J.根据矩形的性质得到AD、CD的长,由结论(1)可得出DG的长,再由勾股定理得出AG的长,然后根据翻折的性质结合勾股定理得出四边形HGPF是矩形,进而得出FH的长度,最后根据相似三角形得出BJ、PJ的长度就可以得出BP的长度.
(1)如图①,过点A作AP∥EF,交BC于P,过点B作BQ∥GH,交CD于Q,BQ交AP于T.
∵四边形ABCD是矩形,
∴AB∥DC,AD∥BC.
∴四边形AEFP、四边形BGHQ都是平行四边形,
∴AP=EF,GH=BQ.
又∵GH⊥EF,
∴AP⊥BQ,
∴∠BAT+∠ABT=90°.
∵四边形ABCD是矩形,
∴∠ABP=∠C=90°,AD=BC,
∴∠ABT+∠CBQ=90°,
∴∠BAP=∠CBQ,
∴△ABP∽△BCQ,
∴,
∴.
(2)如图②中,连接BD.
∵四边形ABCD是矩形,
∴∠C=90°,AB=CD=2,
∴BD=,
∵D,B关于EF对称,
∴BD⊥EF,
∴ ,
∴ ,
∴EF= .
(3)如图③中,过点F作FH⊥EG于H,过点P作PJ⊥BF于J.
∵四边形ABCD是矩形,
∴AB=CD=2,AD=BC=3,∠A=90°,
∴= ,
∴DG=,
∴AG==1,
由翻折可知:ED=EG,设ED=EG=x,
在Rt△AEG中,∵EG2=AE2+AG2,
∴x2=AG2+AE2,
∴x2=(3﹣x)2+1,
∴x=,
∴DE=EG=,
∵FH⊥EG,
∴∠FHG=∠HGP=∠GPF=90°,
∴四边形HGPF是矩形,
∴FH=PG=CD=2,
∴EH=,
∴GH=FP=CF=EG﹣EH=﹣=1,
∵PF∥EG,EA∥FB,
∴∠AEG=∠JPF,
∵∠A=∠FJP=90°,
∴△AEG∽△JFP,
∴,
∴,
∴FJ=,PJ=,
∴BJ=BC﹣FJ﹣CF=3﹣﹣1=,
在Rt△BJP中,BP=.
科目:初中数学 来源: 题型:
【题目】某校350名学生参加植树活动,要求每人植4~7棵,活动结束后随机抽查了若干名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵,将各类的人数绘制成了图1和图2两个统计图表.
请根据相关信息回答下列问题:
(Ⅰ)此次共随机抽查了_______________名学生每人的植树量;
图①中m的值为_______________________;
(Ⅱ)求统计的这组数据的平均数、众数和中位数;
(Ⅲ)根据样本数据,估计这350名学生共植树多少棵?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,AC=2,BC=4.点M1,N1,P1分别在AC,BC,AB上,且四边形M1CN1P1是正方形,点M2,N2,P2分别在P1N1,BN1,BP1上,且四边形M2N1N2P2是正方形,…,点Mn,Nn,Pn分别在Pn-1Nn-1,BNn-1,BPn-1上,且四边形MnNn-1NnPn是正方形,则线段BN2020的长度是__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校开展研学旅行活动,准备去的研学基地有A(曲阜)、B(梁山)、C(汶上),D(泗水),每位学生只能选去一个地方,王老师对本全体同学选取的研学基地情况进行调查统计,绘制了两幅不完整的统计图(如图所示).
(1)求该班的总入数,并补全条形统计图.
(2)求D(泗水)所在扇形的圆心角度数;
(3)该班班委4人中,1人选去曲阜,2人选去梁山,1人选去汶上,王老师要从这4人中随机抽取2人了解他们对研学基地的看法,请你用列表或画树状图的方法,求所抽取的2人中恰好有1人选去曲阜,1人选去梁山的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校组织学生参加“新冠肺炎”防疫知识竞赛,从中抽取了部分学生成绩进行统计,并按照成绩从低到高分成A,B,C,D,E五个小组,绘制统计图如表(未完成),解答下列问题:
(1)样本容量为 ,频数分布直方图中a= ;
(2)扇形统计图中E小组所对应的扇形圆心角为n°,求n的值并补全频数分布直方图;
(3)若成绩在80分以上(不含80分)为优秀,全校共有3000名学生,估计成绩优秀的学生有多少名?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在莲花山滑雪场滑雪,需从山脚下乘缆车上山,缆车索道与水平线所成的角为 32°,缆车速度为每分钟 50 米,从山脚下A 到达山顶 B 缆车需要 16 分钟,则山的高度 BC 约为 ____米.(结果精确到 0.1 米,参考数据:sin32°=0.5299, cos32°=0.8480,tan32°=0.6249)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】新冠肺炎疫情爆发之后,全国许多省市对湖北各地进行了援助,广州市某医疗队备好医疗防护物资迅速援助武汉.第一批医疗队员乘坐高铁从广州出发,2.5小时后,第二批医疗队员乘坐飞机从广州出发,两批队员刚好同时到达武汉.已知广州到武汉的飞行距离为800千米,高铁路程为飞行距离的倍.
(1)求广州到武汉的高铁路程;
(2)若飞机速度与高铁速度之比为5:2,求飞机和高铁的速度.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com