分析 (1)过点E作EF⊥AB于F,利用已知条件可证明△ADE≌△AFE,由全等三角形的性质可得DE=FE,同理可证明EF=EC,所以DE=EF=CE,即点E为CD中点;
(2)由(1)可知AF=AD,BC=BF,所以AB=AF+BF=AD+BC=5,问题得解.
解答 (1)证明:过点E作EF⊥AB于F,
∴∠AFE=90°,
∴∠D=∠AFE=90°
∵AE平分∠BAD,
∴∠DAE=∠FAE,
在△ADE和△AFE中,
$\left\{\begin{array}{l}{∠D=∠AFE=90°}\\{∠DAE=∠FAE}\\{AE=AE}\end{array}\right.$,![]()
∴△ADE≌△AFE(AAS),
∴DE=FE,
同理可得:EF=EC,
∴DE=EF=CE,
即点E为CD中点;
(2)∵△ADE≌△AFE,
∴AF=AD=2,BC=BF=3,
∴AB=AF+BF=AD+BC=5.
点评 本题考查了直角梯形的性质、角平分线的性质以及全等三角形的判定和性质,解题的关键是作出高线,构造全等三角形.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com