如图1,A、B两地在一条河的两岸,现要在河上造一座桥MN.桥造在何处才能使从A到B的路径AMNB最短?(假定河的两岸是平行的直线,桥要与河垂直)
【问题解决】
如图2,过点B作BB′⊥l2,且BB′等于河宽,连接AB′交l1于点M,作MN⊥l1交l2于点N,则MN就为桥所在的位置.
【类比联想】
(1)如图3,正方形ABCD中,点E、F、G分别在AB、BC、CD上,且AF⊥GE,求证:AF=EG.
(2)如图4,矩形ABCD中,AB=2,BC=x,点E、F、G、H分别在AB、BC、CD、AD上,且EG⊥HF,设y=,试求y与x的函数关系式.
【拓展延伸】
如图5,一架长5米的梯子斜靠在竖直的墙面OE上,初始位置时OA=4米,由于地面OF较光滑,梯子的顶端A下滑至点C时,梯子的底端B左滑至点D,设此时AC=a米,BD=b米.
(3)当a= 1 米时,a=b.
(4)当a在什么范围内时,a<b?请说明理由.
【考点】四边形综合题.
【分析】(1)过点作BH∥EG交CD于点H,由ASA定理得出△ABF≌△BCH,根据全等三角形的性质证明结论;
(2)作BM∥GE交CD于点M,作AN∥HF交BC于点N,根据直角三角形的性质和四边形ABCD是矩形,由相似三角形的性质得出△ABN∽△BCM,根据相似三角形的对应边成比例即可得出结论;
(3)根据勾股定理得到(4﹣a)2+(3+b)2=52,根据a=b解方程即可;
(4)过点B作DC的平行线,过点C作OF的平行线,两线交于点P,连接AP,由题意可得DBPC为平行四边形,故可得出∠BAP=∠3+∠1=∠BPA=∠4+∠2.若a<b,即AC<BD=CP,因而在△ACP中,由等边对等角可知∠3<∠5,再由锐角三角函数的定义即可得出结论.
【解答】解:(1)作BH∥EG交CD于点H.则BH=EG.
∵AF⊥EG,
∴BH⊥AF,
∴∠BIF=90°,
∴∠IBF+∠AFB=90°,
又∵直角△ABF中,∠BAF+∠AFB=90°,
∴∠BAF=∠IBF,
∴在△ABF和△BCH中,
,
∴△ABF≌△BCH,
∴AF=BH,
∴AF=EG;
(2)同理作BM∥EG交CD于点M,作AN∥HF交BC于点N.
同(1)可得∠BAN=∠MBC,
又∵∠ABN=∠C,
∴△ABN∽△BCM,
∴==,又HF=AN,EG=BM,
∴y=;
(3)解:∵CO=4﹣a,DO=3+b.
∴Rt△DOC中,DC2=(4﹣a)2+(3+b)2,
即(4﹣a)2+(3+b)2=52.
当a=b时,有(4﹣a)2+(3+a)2=25,
解得a=1或a=0(不合).
故答案为:1;
(4)当0<a<1时,a<b.理由如下:
如图5,过点B作DC的平行线,过点C作OF的平行线,两线交于点P,连接AP.
∵CD∥BP,PC∥OF,
∴DBPC为平行四边形,
∴BP=DC,CP=BD.
又AB=DC,
∴BP=AB.
∴∠BAP=∠3+∠1=∠BPA=∠4+∠2.
若a<b,即AC<BD=CP,因而在△ACP中,
∵∠1>∠2,
∴∠3<∠4.
又∵∠5=∠4,
∴∠3<∠5.
∵Rt△ABO中,sin∠3==,
同理sin∠5==,
∴>,
解得,0<a<1.
【点评】本题考查的是四边形综合题,掌握平行四边形的判定与性质、全等三角形的判定与性质、勾股定理的应用以及一元二次方程的解法是解题的关键,解答时注意锐角三角函数的定义的应用.
科目:初中数学 来源: 题型:
嘉淇想证明三角形内角和是180°和其他一些的命题.请完成下列一些命题和证明.
(1)怎样证明三角形内角和是180°呢?
(2)已知命题:等腰三角形底边上的中线和顶角的角平分线重合,证明这个命题,并写出它的逆命题,逆命题成立吗?
命题: 底边上的中线和顶角的角平分线重合的三角形是等腰三角形
证明: 证明:在△ABD和△ACD中,
∵,
∴△ABD≌△ACD(SSS),
∴∠BAD=∠CAD
由此我们不难发现: 此命题是互逆命题
那么怎样证明呢?请写出证明过程.(可以画出作图痕迹.)
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在边长为6的正方形ABCD中,E是AB边上一点,G是AD延长线上一点,BE=DG,连接EG,CF⊥EG交EG于点H,交AD于点F,连接CE,BH.若BH=8,则FG= .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com