精英家教网 > 初中数学 > 题目详情

【题目】已知:△ABC是等腰直角三角形,动点P在斜边AB所在的直线上,以PC为直角边作等腰直角三角形PCQ,其中∠PCQ=90°,探究并解决下列问题:
(1)如图①,若点P在线段AB上,且AC=1+ ,PA= ,则:

① 线段PB= , PC=
② 猜想:PA2 , PB2 , PQ2三者之间的数量关系为
(2)如图②,若点P在AB的延长线上,在(1)中所猜想的结论仍然成立,请你利用图②给出证明过程;

(3)若动点P满足 = ,求 的值.(提示:请利用备用图进行探求)

【答案】
(1),2,AP2+BP2=PQ2
(2)解:如图②:过点C作CD⊥AB,垂足为D.

∵△ACB为等腰直角三角形,CD⊥AB,

∴CD=AD=DB.

∵AP2=(AD+PD)2=(DC+PD)2=CD2+2DCPD+PD2

PB2=(DP﹣BD)2=(PD﹣DC)2=DC2﹣2DCPD+PD2

∴AP2+BP2=2CD2+2PD2

∵在Rt△PCD中,由勾股定理可知:PC2=DC2+PD2

∴AP2+BP2=2PC2

∵△CPQ为等腰直角三角形,

∴2PC2=PQ2

∴AP2+BP2=PQ2


(3)解:如图③:过点C作CD⊥AB,垂足为D.

①当点P位于点P1处时.

在Rt△CP1D中,由勾股定理得: = = DC,

在Rt△ACD中,由勾股定理得:AC= = = DC,

②当点P位于点P2处时.

=

在Rt△CP2D中,由勾股定理得: = =

在Rt△ACD中,由勾股定理得:AC= = = DC,

综上所述, 的比值为


【解析】(1)如图①:

①∵△ABC是等腰直直角三角形,AC=1+

∴AB= = = +

∵PA=

∴PB=

∵△ABC和△PCQ均为等腰直角三角形,

∴AC=BC,PC=CQ,∠ACP=∠BCQ,

∴△APC≌△BQC.

∴BQ=AP= ,∠CBQ=∠A=45°.

∴△PBQ为直角三角形.

∴PQ=

∴PC= PQ=2.

所以答案是: ,2;

②如图1.

∵△ACB为等腰直角三角形,CD⊥AB,

∴CD=AD=DB.

∵AP2=(AD﹣PD)2=(DC﹣PD)2=DC2﹣2DCPD+PD2,PB2=(DB+PD)2=(DC+DP)2=CD2+2DCPD+PD2

∴AP2+BP2=2CD2+2PD2

∵在Rt△PCD中,由勾股定理可知:PC2=DC2+PD2

∴AP2+BP2=2PC2

∵△CPQ为等腰直角三角形,

∴2PC2=PQ2

∴AP2+BP2=PQ2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】小亮早晨从家骑车到学校,先上坡后下坡,所行路程y(米)与时间x(分钟)的关系如图所示,若返回时上坡、下坡的速度仍与去时上、下坡的速度分别相同,则小明从学校骑车回家用的时间是________分钟.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一元二次方程ax2+bx+c=0中,若a>0,b<0,c<0,则这个方程根的情况是( )
A.有两个正根
B.有两个负根
C.有一正根一负根且正根绝对值大
D.有一正根一负根且负根绝对值大

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△ABC中,BC6ABAC的垂直平分线分别交边BC于点MN,若MN2,则△AMN的周长是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,BA=BC,以AB为直径的⊙O分别交AC,BC于点D,E,延长BC到点F,连接AF,使∠ABC=2∠CAF.

(1)求证:AF是⊙O的切线;
(2)若AC=4,CE:EB=1:3,求CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:

1)(b23b34÷(﹣b53

2)(1+π20180﹣(﹣12019

3)(3x)(﹣x+3)﹣xx+1

4)(2a+b5)(2ab5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在直角三角形ABC中,已知∠C=90°,∠A=40°,BC=3,则AC=( )
A.3sin40°
B.3sin50°
C.3tan40°
D.3tan50°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知非负数abc满足,代数式3a+4b+5c的最大值是x,最小值是y,则x+y的值是___________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明家距离学校8千米,今天早晨,小明骑车上学图中,自行车出现故障,恰好路边有便民服务点,几分钟后车修好了,他以更快的速度匀速骑车到校.我们根据小明的这段经历画了一幅图象(如图),该图描绘了小明行驶的路程(千米)与他所用的时间(分钟)之间的关系.请根据图象,解答下列问题:

1)小明行了多少千米时,自行车出现故障?修车用了几分钟?

2)小明从早晨出发直到到达学校共用了多少分钟?

3)小明修车前、后的行驶速度分别是多少?

4)如果自行车未出现故障,小明一直用修车前的速度行驶,那么他比实际情况早到或晚到多少分钟?

查看答案和解析>>

同步练习册答案