精英家教网 > 初中数学 > 题目详情

【题目】如图,过矩形的对角线的中点,交边于点,交边于点,分别连接.若,则的长为( )

A.B.C.D.

【答案】A

【解析】

求出∠ACB=DAC,然后利用“角角边”证明△AOF和△COE全等,根据全等三角形对应边相等可得OE=OF,再根据对角线互相垂直平分的四边形是菱形得到四边形AECF是菱形,再求出∠ECF=60°,然后判断出△CEF是等边三角形,根据等边三角形的三条边都相等可得EF=CF,根据矩形的对边相等可得CD=AB,然后求出CF,从而得解.

解:如图:∵矩形对边AD//BC

∴∠ACB=DAC

OAC的中点,

AO=CO

在△AOF和△COE中,

∴△AOFACOEASA),

OE=OF

又∵EFAC

∴四边形AECF是菱形,

∵∠DCF=30°,

.ECF=90°-30°=60°,

∴△CEF是等边三角形,

EF=CF

AB=

CD=AB=

∵∠DCF=30°,

EF=2,故选A.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线与函数的图象交于两点,且点的坐标为

1)求的值;

2)已知点,过点作平行于轴的直线,交直线于点,交函数的图象于点

①当时,求线段的长;

②若,结合函数的图象,直接写出的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们做如下的规定:如果一个三角形在运动变化时保持形状和大小不变,则把这样的三角形称为三角形板.

把两块边长为4的等边三角形板叠放在一起,使三角形板的顶点与三角形板AC边中点重合,把三角形板固定不动,让三角形板绕点旋转,设射线与射线相交于点M,射线与线段相交于点N

1)如图1,当射线经过点,即点N与点重合时,易证ADM∽△CND.此时,AM·CN=      

2)将三角形板由图1所示的位置绕点沿逆时针方向旋转,设旋转角为.其中,问AM·CN的值是否改变?说明你的理由.

3)在(2)的条件下,设AM= x,两块三角形板重叠面积为,求的函数关系式.(图2,图3供解题用)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形 ABCD 中,AB=8BC=4.点 E 在边 AB 上,点 F 在边 CD 上,点 GH 在对角线 AC 上.若四边形 EGFH 是菱形,则 AE 的长是(

A.2B.3C.5D.6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1是无障碍通道,图2是其截面示意图,已知坡角∠BAC=30°,斜坡AB=4m,∠ACB=90°.现要对坡面进行改造,使改造后的坡角∠BDC=26.5°,需要把水平宽度AC增加多少m(结果精确到0.1)?(参考数据:≈1.73sin26.5°≈0.45cos26.5°≈0.90tan26.5°≈0.50

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点EAD的延长线上,则∠CDE的度数为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,△ABC的顶点AC分别在x轴、y轴的正半轴上,且ABy轴,AB4,△ABC的面积为2,将△ABC以点B为旋转中心,顺时针旋转90°得到△DBE,一反比例函数图象恰好过点D时,则此反比例函数解析式是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在每个小正方形的边长均为1的方格纸中有线段ABCD,点ABCD均在小正方形的顶点上.

1)画出一个以AB为一边的△ABE,点E在小正方形的顶点上,且∠BAE45°,△ABE的面积为

2)画出以CD为一腰的等腰△CDF,点F在小正方形的顶点上,且△CDF的面积为

3)在(1)、(2)的条件下,连接EF,请直接写出线段EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知直线y=x+7a+1与直线y=2x2a+4同时经过点P,点Q是以M0,﹣1)为圆心,MO为半径的圆上的一个动点,则线段PQ的最小值为(  )

A.B.C.D.

查看答案和解析>>

同步练习册答案