【题目】如图,过矩形的对角线的中点作,交边于点,交边于点,分别连接、.若,,则的长为( )
A.B.C.D.
【答案】A
【解析】
求出∠ACB=∠DAC,然后利用“角角边”证明△AOF和△COE全等,根据全等三角形对应边相等可得OE=OF,再根据对角线互相垂直平分的四边形是菱形得到四边形AECF是菱形,再求出∠ECF=60°,然后判断出△CEF是等边三角形,根据等边三角形的三条边都相等可得EF=CF,根据矩形的对边相等可得CD=AB,然后求出CF,从而得解.
解:如图:∵矩形对边AD//BC,
∴∠ACB=∠DAC,
∵O是AC的中点,
∴AO=CO,
在△AOF和△COE中,
∴△AOF≌ACOE(ASA),
∴OE=OF,
又∵EF⊥AC,
∴四边形AECF是菱形,
∵∠DCF=30°,
∴.∠ECF=90°-30°=60°,
∴△CEF是等边三角形,
∴EF=CF,
∵AB= ,
∴CD=AB=,
∵∠DCF=30°,
∴
∴EF=2,故选A.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线与函数的图象交于,两点,且点的坐标为.
(1)求的值;
(2)已知点,过点作平行于轴的直线,交直线于点,交函数的图象于点.
①当时,求线段的长;
②若,结合函数的图象,直接写出的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们做如下的规定:如果一个三角形在运动变化时保持形状和大小不变,则把这样的三角形称为三角形板.
把两块边长为4的等边三角形板和叠放在一起,使三角形板的顶点与三角形板的AC边中点重合,把三角形板固定不动,让三角形板绕点旋转,设射线与射线相交于点M,射线与线段相交于点N.
(1)如图1,当射线经过点,即点N与点重合时,易证△ADM∽△CND.此时,AM·CN= .
(2)将三角形板由图1所示的位置绕点沿逆时针方向旋转,设旋转角为.其中,问AM·CN的值是否改变?说明你的理由.
(3)在(2)的条件下,设AM= x,两块三角形板重叠面积为,求与的函数关系式.(图2,图3供解题用)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形 ABCD 中,AB=8,BC=4.点 E 在边 AB 上,点 F 在边 CD 上,点 G、H 在对角线 AC 上.若四边形 EGFH 是菱形,则 AE 的长是( )
A.2B.3C.5D.6
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图1是无障碍通道,图2是其截面示意图,已知坡角∠BAC=30°,斜坡AB=4m,∠ACB=90°.现要对坡面进行改造,使改造后的坡角∠BDC=26.5°,需要把水平宽度AC增加多少m(结果精确到0.1)?(参考数据:≈1.73,sin26.5°≈0.45,cos26.5°≈0.90,tan26.5°≈0.50)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,△ABC的顶点A和C分别在x轴、y轴的正半轴上,且AB∥y轴,AB=4,△ABC的面积为2,将△ABC以点B为旋转中心,顺时针旋转90°得到△DBE,一反比例函数图象恰好过点D时,则此反比例函数解析式是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在每个小正方形的边长均为1的方格纸中有线段AB和CD,点A、B、C、D均在小正方形的顶点上.
(1)画出一个以AB为一边的△ABE,点E在小正方形的顶点上,且∠BAE=45°,△ABE的面积为;
(2)画出以CD为一腰的等腰△CDF,点F在小正方形的顶点上,且△CDF的面积为;
(3)在(1)、(2)的条件下,连接EF,请直接写出线段EF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知直线y=﹣x+7a+1与直线y=2x﹣2a+4同时经过点P,点Q是以M(0,﹣1)为圆心,MO为半径的圆上的一个动点,则线段PQ的最小值为( )
A.B.C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com