【题目】如图,正方形
的边长为6,点
是
上的一点,连接
并延长交射线
于点
,将
沿直线
翻折,点
落在点
处,
的延长线交
于点
,当
时,则
的长为________.
![]()
【答案】![]()
【解析】
根据翻折变换的性质可得AN=AB,∠BAE=∠NAE,再根据两直线平行,内错角相等可得∠BAE=∠F,从而得到∠NAE=∠F,根据等角对等边可得AM=FM,设CM=x,表示出DM、AM,然后利用勾股定理列方程求出x的值,从而得到AM的值,最后根据NM=AM-AN计算即可得解.
∵△ABE沿直线AE翻折,点B落在点N处,
∴AN=AB=6,∠BAE=∠NAE,
∵正方形对边AB∥CD,
∴∠BAE=∠F,
∴∠NAE=∠F,
∴AM=FM,
设CM=x,∵AB=2CF=8,
∴CF=3
∴DM=6x,AM=FM=3+x,
在Rt△ADM中,由勾股定理得,
,
即
解得x=
,
所以,AM=3+
=
,
所以,NM=AMAN=
6=![]()
科目:初中数学 来源: 题型:
【题目】某学校计划在“阳光体育”活动课程中开设乒乓球、羽毛球、篮球、足球四个体育活动项目供学生选择,为了估计全校学生对这四个活动项日的选择情况,体育老师从全体学生中随机抽取了部分学生进行调查(规定每人必须并且只能选择其中的一个项目),并把调查结果绘制成如图所示的不完整的条形统计图和扇形统计图,请你根据图中信息解答下列问题:
![]()
(1)求参加这次调查的学生人数,并补全条形统计图;
(2)求扇形统计图中“篮球”项目所对应扇形的圆心角度数;
(3)若该校共有1600名学生,试估计该校选择“足球”项目的学生有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在等腰直角三角形ABC中,∠BAC=90°,AB=AC,D是斜边BC的中点,连接AD.
(1)如图1,E是AC的中点,连接DE,将△CDE沿CD翻折到△CDE′,连接AE′,当AD=
时,求AE的值.
(2)如图2,在AC上取一点E,使得CE=
AC,连接DE,将△CDE沿CD翻折到△CDE′,连接AE′交BC于点F,求证:DF=CF.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在正方形ABCD中,过点A引射线AH,交边CD于点H(点H与点D不重合),通过翻折,使点B落在射线AH上的点G处,折痕AE交BC于点E,延长EG 交CD于点F.如图①,当点H与点C重合时,易证得FG=FD(不要求证明);如图②,当点H为边CD上任意一点时,求证:FG=FD.
【应用】在图②中,已知AB=5,BE=3,则FD= ,△EFC的面积为 .(直接写结果)
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在求两位数的平方时,可以用“列竖式”的方法进行速算,求解过程如图1所示.
![]()
(1)仿照图1,在图2中补全
的“竖式”;
(2)仿照图1,用“列竖式”的方法计算一个十位数字是
的两位数的平方,过程部分如图3所示,则这个两位数为 (用含
的代数式表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列材料:
我们给出如下定义:数轴上给定两点
,
以及一条线段
,若线段
的中点
在线段
上(点
可以与点
或
重合),则称点
与点
关于线段
径向对称.下图为点
与点
关于线段
径向对称的示意图.
![]()
解答下列问题:
如图1,在数轴上,点
为原点,点
表示的数为-1,点
表示的数为2.
![]()
(1)①点
,
,
分别表示的数为-3,
,3,在
,
,
三点中, 与点
关于线段
径向对称;
②点
表示的数为
,若点
与点
关于线段
径向对称,则
的取值范围是 ;
(2)在数轴上,点
,
,
表示的数分别是-5,-4,-3,当点
以每秒1个单位长度的速度向正半轴方向移动时,线段
同时以每秒3个单位长度的速度向正半轴方向移动.设移动的时间为
(
)秒,问
为何值时,线段
上至少存在一点与点
关于线段
径向对称.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:M=3a2+4ab -5a-6,N=a2-2ab-4
(1)化简:5M-(3N + 4M),结果用含a、b的式子表示.
(2)若式子5M-(3N + 4M)的值与字母a的取值无关,求b4+
M-
N-
的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在□ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论:(1) ∠DCF=
∠BCD;(2)EF=CF;(3)S△CDF=S△CEF;(4)∠DFE=3∠AEF.其中正确结论的个数是( )
![]()
A. 1个B. 2个C. 3个D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】学习过绝对值之后,我们知道:|5-2|表示 5 与 2 的差的绝对值,实际上也可理解为 5 与 2 两数在数轴上所对应的两点之间的距离:|5+2|表示 5 与-2 的差的绝对值,实际上也可理解为 5 与-2 两数在数轴上所对应的两点之间的距离. 试探究解决以下问题:
⑴|x+6|可以理解为 与 两数在数轴上所对应的两点之间的距离;
⑵找出所有符合条件的整数 x,使|x+1|+|x-2|=3 成立;
⑶如图,在一条笔直的高速公路旁边依次有 A、B、C 三个城市,它们距高速公路起点的距离分别是 567km、689km、889km.现在需要在该公路旁建一个物流集散中心 P,请直接指出该物流集散中心 P 应该建设在何处,才能使得 P 到三个城市的距离之和最小?这个最小距离是多少?
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com