精英家教网 > 初中数学 > 题目详情

【题目】如图,ADO的切线,切点为AABO的弦,过点BBCAD,交O于点C,连接AC,过点CCDAB,交AD于点D,连接AO并延长交BC于点M,交过点C的直线于点P,且∠BCP=∠ACD

(1)判断直线PCO的位置关系,并说明理由.

(2)若AB=5BC=10,求O的半径及PC的长.

【答案】(1)PCO相切;(2)r3PC.

【解析】

(1)C点作直径CE,连接EB,由CE为直径得∠E+∠BCE=90°,由AB∥DC得∠ACD=∠BAC,而∠BAC=∠E,∠BCP=∠ACD,所以∠E=∠BCP,于是∠BCP+∠BCE=90°,然后根据切线的判断得到结论;

(2)根据切线的性质得到OA⊥AD,而BC∥AD,则AM⊥BC,根据垂径定理有BM=CM=BC=5,根据等腰三角形性质有AC=AB=5,在Rt△AMC中根据勾股定理计算出AM的长度,设O的半径为r,则OC=r,OM=AM-r=5-r,在Rt△OCM中,根据勾股定理计算出r=3,由CE=2r,利用中位线性质得BE的长度,然后判断Rt△PCM∽Rt△CEB,根据相似比可计算出PC.

解:(1)PCO相切,理由为:

C点作直径CE,连接EB,如图,

∵CE为直径,

∴∠EBC=90°,即∠E+∠BCE=90°,

∵AB∥DC,

∴∠ACD=∠BAC,

∵∠BAC=∠E,∠BCP=∠ACD.

∴∠E=∠BCP,

∴∠BCP+∠BCE=90°,即∠PCE=90°,

∴CE⊥PC,

∴PCO相切;

(2)∵ADO的切线,切点为A,

∴OA⊥AD,

∵BC∥AD,

∴AM⊥BC,

∴BM=CM=BC=5,

∴AC=AB=5

Rt△AMC中,AM==5O的半径为r,则OC=r,OM=AM﹣r=5﹣r,

Rt△OCM中,OM2+CM2=OC2,即(5r)2+52=r2

解得:r=3

∴CE=2r=6,OM=5﹣r=2

∴BE=2OM=4

∵∠E=∠MCP,

∴Rt△PCM∽Rt△CEB,

∴PC=

故答案为:(1)PCO相切;(2)r3PC.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,ABC的顶点坐标分别为A13),B42),C21).

1作出与ABC关于x轴对称的A1B1C1

2)以原点O为位似中心,在原点的另一个侧画出A2B2C2.使=,并写出A2B2C2的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某地发生8.1级地震,震源深度20千米.救援队火速赶往灾区救援,探测出某建筑物废墟下方点C处有生命迹象.在废墟一侧某面上选两探测点A、B,AB相距2米,探测线与该面的夹角分别是30°45°(如图).试确定生命所在点C与探测面的距离.(参考数据≈1.41,≈1.73)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图ABCP四点均在边长为1的小正方形网格格点上

(1)判断PBAABC是否相似并说明理由

(2)BAC的度数

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,的平分线相交于点,过点于点,交于点,过点于点,某班学生在一次数学活动课中,探索出如下结论,其中错误的是(

A.B.各边的距离相等

C.D.,则

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四条直线l1:y1=x,l2:y2=x,l3:y3=﹣x,l4:y4=﹣x,OA1=1,过点A1A1A2x轴,交l1于点A2,再过点A2A2A3l1l2于点A3,再过点A3A3A4l2y轴于点A4,则点A2017坐标为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点P在斜边AB上 (不与A、B重合),过P作PE⊥AC,PF⊥BC,垂足分别是E、F,连接EF.随着P点在边AB上位置的改变,EF的长度是否也会改变?若不变,请你求EF的长度;若有变化,请你求EF的变化范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.

(1)该顾客至少可得到 元购物券,至多可得到 元购物券;

(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=x+2与坐标轴相交于A,B两点,与反比例函数y=在第一象限交点C(1,a).求:

(1)反比例函数的解析式;

(2)AOC的面积;

(3)不等式x+2﹣<0的解集(直接写出答案)

查看答案和解析>>

同步练习册答案