【题目】已知Rt△ABC中,AB是⊙O的弦,斜边AC交⊙O于点D,且AD=DC,延长CB交⊙O于点E.
(1)图1的A、B、C、D、E五个点中,是否存在某两点间的距离等于线段CE的长?请说明理由;
(2)如图2,过点E作⊙O的切线,交AC的延长线于点F.
①若CF=CD时,求sin∠CAB的值;
②若CF=aCD(a>0)时,试猜想sin∠CAB的值.(用含a的代数式表示,直接写出结果)
【答案】(1)AE=CE;(2)①;②.
【解析】试题(1)连接AE、DE,如图1,根据圆周角定理可得∠ADE=∠ABE=90°,由于AD=DC,根据垂直平分线的性质可得AE=CE;
(2)连接AE、ED,如图2,由∠ABE=90°可得AE是⊙O的直径,根据切线的性质可得∠AEF=90°,从而可证到△ADE∽△AEF,然后运用相似三角形的性质可得=ADAF.①当CF=CD时,可得,从而有EC=AE=CD,在Rt△DEC中运用三角函数可得sin∠CED=,根据圆周角定理可得∠CAB=∠DEC,即可求出sin∠CAB的值;②当CF=aCD(a>0)时,同①即可解决问题.
试题解析:(1)AE=CE.理由:
连接AE、DE,如图1,∵∠ABC=90°,∴∠ABE=90,∴∠ADE=∠ABE=90°,∵AD=DC,∴AE=CE;
(2)连接AE、ED,如图2,∵∠ABE=90°,∴AE是⊙O的直径,∵EF是⊙OO的切线,∴∠AEF=90°,∴∠ADE=∠AEF=90°,又∵∠DAE=∠EAF,∴△ADE∽△AEF,∴,∴=ADAF.
①当CF=CD时,AD=DC=CF,AF=3DC,∴=DC3DC=,∴AE=DC,∵EC=AE,∴EC=DC,∴sin∠CAB=sin∠CED===;
②当CF=aCD(a>0)时,sin∠CAB=.
∵CF=aCD,AD=DC,∴AF=AD+DC+CF=(a+2)CD,∴=DC(a+2)DC=(a+2),∴AE=DC,∵EC=AE,∴EC=DC,∴sin∠CAB=sin∠CED==.
科目:初中数学 来源: 题型:
【题目】如图,△ABC是等腰直角三角形, AB=AC,D是斜边BC的中点,E、F分别是AB、AC边上的点,且DE⊥DF.
(1)请说明:DE=DF;
(2)请说明:BE2+CF2=EF2;
(3)若BE=6,CF=8,求△DEF的面积(直接写结果).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线与轴和轴分别交于点和点,与直线相交于点,,动点在线段和射线上运动.
(1)求点和点的坐标.
(2)求的面积.
(3)是否存在点,使的面积是的面积的?若存在,求出此时点的坐标,若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有2个空心菱形,第②个图形中一共有5个空心菱形,第③个图形中一共有11个空心菱形,…,按此规律排列下去,第⑨个图形中空心菱形的个数为( )
A.68B.76C.86D.104
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在一次数学活动课上,张明用17个边长为1的小正方形搭成了一个几何体,然后他请王亮用其他同样的小正方体在旁边再搭一个几何体,使王亮所搭几何体恰好可以和张明所搭几何体拼成一个无缝隙的大长方体(不改变张明所搭几何体的形状),那么王亮至少还需要 个小立方体,王亮所搭几何体的表面积为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】矩形ABCD的对角线相交于点O,∠COE=45°,过点C作CE⊥BD于点E,
(1)如图1,若CB=1,求△CED的面积;
(2)如图2,过点O作OF⊥DB于点O,OF=OD,连接FC,点G是FC中点,连接GE,求证:DC=2GE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,P是等腰直角△ABC外一点,把BP绕点B顺时针旋转90°到BP′,已知∠AP′B=135°,P′A∶P′C=1∶3,则P′A∶PB=( )
A. 1∶ B. 1∶2 C. ∶2 D. 1∶
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com