【题目】在求两位数的平方时,可以用“列竖式”的方法进行速算,求解过程如图1所示.仿照图1,用“列竖式”的方法计算一个两位数的平方,部分过程如图2所示,若这个两位数的个位数字为a,则这个两位数为( )
A.a﹣50B.a+50C.a﹣20D.a+20
科目:初中数学 来源: 题型:
【题目】问题背景:
如图1,△ABC为等边三角形,作AD⊥BC于点D,将∠ABC绕点B顺时针旋转30°后,BA,BC边与射线AD分别交于点E,F,求证:△BEF为等边三角形.
迁移应用:
如图2,△ABC为等边三角形,点P是△ABC外一点,∠BPC=60°,将∠BPC绕点P逆时针旋转60°后,PC边恰好经过点A,探究PA,PB,PC之间存在的数量关系,并证明你的结论;
拓展延伸:
如图3,在菱形ABCD中,∠ABC=60°,将∠ABC绕点B顺时针旋转到如图所在的位置得到∠MBN,F是BM上一点,连接AF,DF,DF交BN于点E,若B,E两点恰好关于直线AF对称.
(1)证明△BEF是等边三角形;
(2)若DE=6,BE=2,求AF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图1,数轴上表示1、的对应点分别为A、B,点C在OA上,且AC=AB,试求点C所表示的实数.
(2)如图2,数轴的正半轴上有A、B、C三点,表示1和的对应点分别为A、B,点B到点A的距离与点C到点O的距离相等,设点C所表示的数为x.求(x﹣)2的立方根.
(3)如图3,a,b,c是数轴上三个点A、B、C所对应的实数.(|c|>|b|>|a|),试化简:.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某电信公司有甲、乙两种手机收费业务,仅上网流量收费不同,图中I1、I2分别表示甲、乙两种业务每月流量费用y(元)与上网流量xGB的之间的函数关系。
(1)分别求出甲、乙两种业务每月所收费用y元与上网流量xGB之间的函数关系式。
(2)已知刘老师选择了甲业务,魏老师选择了乙业务,上月两位老师所用流量相同,均为mGB,上网流量费用相差不到20元,求m的取值范围。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,△ABC中,AC=3,∠ABC=30°.
(1)尺规作图:求作△ABC的外接圆,保留作图痕迹,不写作法;
(2)求(1)中所求作的圆的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知矩形OABC的两个顶点A、B的坐标分别
(1)求对角线AC所在的直线的函数表达式;
(2)把矩形OABC以AC所在的直线为对称轴翻折,点O落在平面上的点D处,求点D的坐标;
(3)在平面内是否存在点P,使得以A、O、D、P为顶点的四边形为平行四边形?若存在,求出点P的坐标;若不存在,请说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列条件中,能判定四边形ABCD为平行四边形的个数是( )
①AB∥CD,AD=BC ; ②AB=CD,AD=BC;③∠A=∠B,∠C=∠D; ④AB=AD,CB=CD.
A. 1个B. 2个C. 3个D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】观察算式:1×3+1=4=22;2×4+1=9=32;3×5+1=16=42;4×6+1=25=52,…
(1)请根据你发现的规律填空:6×8+1=( )2;
(2)用含n的等式表示上面的规律: ;
(3)用找到的规律解决下面的问题:
计算:(1+)(1+)(1+)(1+)…(1+)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,O为坐标原点,已知直线经过点A(-6,0),它与y轴交于点B,点B在y轴正半轴上,且OA=2OB
(1)求直线的函数解析式
(2)若直线也经过点A(-6,0),且与y轴交于点C,如果ΔABC的面积为6,求C点的坐标
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com