【题目】某电信公司有甲、乙两种手机收费业务,仅上网流量收费不同,图中I1、I2分别表示甲、乙两种业务每月流量费用y(元)与上网流量xGB的之间的函数关系。
(1)分别求出甲、乙两种业务每月所收费用y元与上网流量xGB之间的函数关系式。
(2)已知刘老师选择了甲业务,魏老师选择了乙业务,上月两位老师所用流量相同,均为mGB,上网流量费用相差不到20元,求m的取值范围。
【答案】(1)I1:y=100x;
I2:;
(2)0.3<m<0.7.
【解析】
(1)根据图象中提供的信息利用待定系数法即可得到结论;
(2)根据题意即可得到结论.
解:(1)设l1的解析式为y=kx则依题意得:
0.8k=80,解得k=100.
∴l1的解析式为y=100x;
由图象可知当0<x<1时,l2=50,当x≥1时,设l2的解析式为y=kx+b,则依题意得:
解得:
∴当x≥1时,l2的解析式为y=100x-50.
∴I1:y=100x;
I2:;
(2)由图象知,当x>1时,两人所交费用差相等,且差为50,所以费用差小于20,则x<1,故y1-y2差的绝对值小于20,得0.3<m<0.7
∴m的取值范围是:0.3<m<0.7.
科目:初中数学 来源: 题型:
【题目】自实施新教育改革后,学生的自主学习、合作交流能力有很大提高,张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分同学进行了为期半个月的跟踪调查,并将调查结果分为四类:A.特别好;B.好;C.一般;D.较差,并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:
(1)本次调查中,张老师一共调查了多少名同学?
(2)求出调查中C类女生及D类男生的人数,将条形统计图补充完整;
(3)为了共同进步,张老师想从被调查的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,射线BD是∠MBN的平分线,点A、C分别是角的两边BM、BN上两点,且AB=BC,E是线段BC上一点,线段EC的垂直平分线交射线BD于点F,连结AE交BD于点G,连结AF、EF、FC.
(1)求证:AF=EF;
(2)求证:△AGF∽△BAF;
(3)若点P是线段AG上一点,连结BP,若∠PBG=∠BAF,AB=3,AF=2,求.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将一段标有0~60均匀刻度的绳子铺平后折叠(绳子无弹性),使绳子自身的一部分重叠,然后在重叠部分沿绳子垂直方向剪断,将绳子分为A、B、C三段,若这三段的长度由短到长的比为1:2:3,则折痕对应的刻度不可能是( )
A. 20 B. 25 C. 30 D. 35
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠AOB是平角,OD是∠AOC的角平分线,∠COE=∠BOE.
(1)若∠AOC= 50°,则∠DOE= °;
(2)若∠AOC= 50°,则图中与∠COD互补的角为 ;
(3)当∠AOC的大小发生改变时,∠DOE的大小是否发生改变?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】观察下列两个等式:2×=22﹣2×﹣2,4×=42﹣2×﹣2,给出定义如下:我们称使等式ab=a2﹣2b﹣2成立的一对有理数a,b为“方差有理数对”,记为(a,b),如:(2,),(4,)都是“方差有理数对”.
(1)判断数对(﹣1,﹣1)是否为“方差有理数对”,并说明理由;
(2)若(m,2)是“方差有理数对”,求﹣6m﹣3[m2﹣2(2m﹣1)]的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在求两位数的平方时,可以用“列竖式”的方法进行速算,求解过程如图1所示.仿照图1,用“列竖式”的方法计算一个两位数的平方,部分过程如图2所示,若这个两位数的个位数字为a,则这个两位数为( )
A.a﹣50B.a+50C.a﹣20D.a+20
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(其中∠P=30°)的直角顶点放在点O处,一边OQ在射线OA上,另一边OP与OC都在直线AB的上方.将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.
(1)如图2,经过t秒后,OP恰好平分∠BOC.
①求t的值;
②此时OQ是否平分∠AOC?请说明理由;
(2)若在三角板转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠POQ?请说明理由;
(3)在(2)问的基础上,经过多少秒OC平分∠POB?(直接写出结果).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店经销一种健身球,已知这种健身球的成本价为每个20元,市场调查发现,该种健身球每天的销售量y(个)与销售单价x(元)有如下关系:y=﹣20x+80(20≤x≤40),设这种健身球每天的销售利润为w元.
(1)求w与x之间的函数关系式;
(2)该种健身球销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?
(3)如果物价部门规定这种健身球的销售单价不高于28元,该商店销售这种健身球每天要获得150元的销售利润,销售单价应定为多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com