精英家教网 > 初中数学 > 题目详情
8.如图,矩形ABCD中,AD=4,AB=7,点E为DC上一动点,△ADE沿AE折叠,点D落在矩形ABCD内一点D′处,若△BCD′为等腰三角形,则DE的长为$\frac{4}{3}$$\sqrt{3}$或$\frac{32-4\sqrt{15}}{7}$.

分析 连接DD′,利用折叠得出AD=AD′,利用矩形的性质,以及△BCD′为等腰三角形,需要分类讨论;进一步求得结论即可.

解答 解:①:CD'=BD'时,如图,
由折叠性质,得AD=AD′,∠DAE=∠D′AE,
∵四边形ABCD是矩形,
∴AB=CD,∠ABC=∠DCB=90°,
∵△BCD′为等腰三角形,
∴D′B=D′C,∠D′BC=∠D′CB,
∴∠DCD′=∠ABD′,
在△DD′C和△AD′B中,
$\left\{\begin{array}{l}{DC=AB}\\{∠DCD′=∠ABD′}\\{CD′=BD′}\end{array}\right.$,
∴△DD′C≌△AD′B,
∴DD′=AD′,
∴DD′=AD′=AD,
∴△ADD′是等边三角形,
∴∠DAD′=60°,
∴∠DAE=30°,
∴DE=$\frac{1}{2}$AE,
设DE=x,则AE=2x,
(2x)2-x2=42
解得:x=$\frac{4}{3}$$\sqrt{3}$,
即DE=$\frac{4}{3}$$\sqrt{3}$.

②:当CD'=CB时,如图,连接AC,
由于AD'=4,CD'=4,
而AC=$\sqrt{{7}^{2}+{4}^{2}}$=$\sqrt{65}$>4+4;
故这种情况不存在.

③当BD'=BC时,如图过D'作AB的垂线,垂足为F,延长D'F交CD于G,
由于AD'=BD',D'F=D'F;易知AF=BF,
从而由勾股定理求得D'F=$\sqrt{AD{'}^{2}-A{F}^{2}}$=$\sqrt{{4}^{2}-(\frac{7}{2})^{2}}$=$\frac{\sqrt{15}}{2}$,
又易证△AD'F∽△D'EG,设DE=x,D'E=x,
∴$\frac{D'E}{AD'}=\frac{D'G}{AF}$,即$\frac{x}{4}=\frac{4-\frac{\sqrt{15}}{2}}{\frac{7}{2}}$;
解得x=$\frac{32-4\sqrt{15}}{7}$
综上,故答案为:$\frac{4}{3}$$\sqrt{3}$或$\frac{32-4\sqrt{15}}{7}$.

点评 此题考查翻折变换,矩形的性质,三角形全等的判定与性质,等腰三角形的性质,勾股定理,掌握折叠的性质,证得三角形全等是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

5.下列函数关系中表示一次函数的有(  )                               
①y=2x-1;②y=$\frac{1}{2x}$;③y=100-3x;④s=pr2
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,在△ABC中,CD是AB边上的中线,已知∠B=45°,tan∠ACB=2,AC=$\sqrt{5}$,求:
(1)△ABC面积;
(2)CD的长;
(3)sin∠ACD的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.已知线段AB=acm,点M(不与A、B重合)为线段AB上任意一点,点E、F分别为AM、BM的中点.
试用含a的代数式表示线段EF,并说明线段EF的长与点M的位置是否有关.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.定义:一条直线平分三角形的面积称这条直线为三角形的“等积线”,平分三角形的周长称这条直线为三角形的“等周线”,已知在直角坐标系中,点O为坐标原点,A(4,3),B(4,-3).
(1)过点A是否存在直线l,既是△AOB的“等积线”又是“等周线”,请说明理由.
(2)当点P在线段OA上,点Q在线段OB上,直线PQ为△AOB的“等周线”,求|yP-yQ|;
(3)当点M在线段OB上,点N在线段AB上,直线MN既是△AOB的“等积线”又是“等周线”,
①求OM的长;②平面上是否还有既是△AOB的“等积线”,又是“等周线”的直线?若有,请画出所有情况的示意图.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图所示,△ABC是等腰直角三角形,CA=CB,∠ACB=90°,AD是BC边上的中线,过C作AD的垂线,垂足为F,交AB于点G,过点B作BE⊥BC,交CG的延长线于点E,连接DG.
(1)求证:BE=CD;
(2)求证:GD=GE.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.已知△ABC和△AEF中,AB=AC,AE=AF,∠BAC=∠EAF,BE、CF交于M,连接MA.
(1)如图1,若∠BAC=60°,求∠CMB的度数;
(2)如图2,若∠BAC=90°,则∠CMB=90°;
(3)如图3,若∠BAC=a,则∠AMC=90°+$\frac{1}{2}$α.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,在直角梯形ABCD中,AB∥CD,∠A=90°,AB=2,AD=5,P是AD上一动点(不与A、D重合),PE⊥BP,PE交DC于点E.
(1)△ABP与△DPE是否相似?请说明理由;
(2)设AP=x,DE=y,求y与x之间的函数关系式,并指出自变量x的取值范围;
(3)请你探索在点P运动的过程中,四边形ABED能否构成矩形?如果能,求出AP的长;如果不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.如图,已知∠AOB=60°,点P在边OA上,OP=10,点M,N在边OB上,PM=PN,若MN=2,则OM=4.

查看答案和解析>>

同步练习册答案