【题目】某蔬菜经销商去蔬菜生产基地批发某种蔬菜,已知这种蔬菜的批发量在20千克~60千克之间(含20千克和60千克)时,每千克批发价是5元;若超过60千克时,批发的这种蔬菜全部打八折.
(1)经调查,该蔬菜经销商销售该种蔬菜的日销售量y(千克)与零售价x(元/千克)是一次函数关系,其图象如图,求出y与x之间的函数关系式;
(2)若该蔬菜经销商每日销售此种蔬菜不低于75千克,且当日零售价不变,那么零售价定为多少时,该经销商销售此种蔬菜的当日利润最大?最大利润为多少元?
【答案】(1)y=﹣30x+240;(2)零售价定为5.5元时,当日可获得利润最大,最大利润为112.5元
【解析】
(1)利用待定系数法,把点(5,90),(6,60)代入一次函数解析式,求出待定系数即可;
(2)设当日可获利润w(元),日零售价为x元,根据第(1)问及题意列出关于w和x的函数关系式,再根据二次函数的图象和性质及实际意义(﹣30x+240≥75,即x≤5.5)得出最大值.
解:(1)设该一次函数解析式为y=kx+b(k≠0),把点(5,90),(6,60)代入,得
,
解得.
故该一次函数解析式为:y=﹣30x+240;
(2)设当日可获利润w(元),日零售价为x元,由(1)知,
w=(﹣30x+240)(x﹣5×0.8)=-30x2+360x-960
=﹣30(x﹣6)2+120,﹣30x+240≥75,即x≤5.5,
当x=5.5时,当日可获得利润最大,最大利润为112.5元.
科目:初中数学 来源: 题型:
【题目】2019年12月以来,湖北省武汉市部分医院陆续发现不明原因肺炎病例,现已证实该肺炎为一种新型冠状病毒感染的肺炎,其传染性较强.为了有效地避免交叉感染,需要采取以下防护措施:①戴口罩;②勤洗手;③少出门;④重隔离;⑤捂口鼻;⑥谨慎吃.某公司为了解员工对防护措施的了解程度(包括不了解、了解很少、基本了解和很了解),通过网上问卷调查的方式进行了随机抽样调查(每名员工必须且只能选择一项),并将调查结果绘制成如下两幅统计图.
请你根据上面的信息,解答下列问题
(1)本次共调查了_______名员工,条形统计图中________;
(2)若该公司共有员工1000名,请你估计不了解防护措施的人数;
(3)在调查中,发现有4名员工对防护措施很了解,其中有3名男员工、1名女员工.若准备从他们中随机抽取2名,让其在公司群内普及防护措施,求恰好抽中一男一女的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知如图:在⊙O中,直径AB⊥弦CD于G,E为DC延长线上一点,BE交⊙O于点F.
(1)求证:∠EFC=∠BFD;
(2)若F为半圆弧AB的中点,且2BF=3EF,求tan∠EFC的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】经历疫情复学后,学校开展了多种形式的防疫知识讲座,并举行了全员参加的“防疫”知识竞赛,试卷题目共10题,每题10分.现分别从七年级1,2,3班中各随机抽取10名同学的成绩(单位:分).
收集整理数据如下:
分析数据:
平均数 | 中位数 | 众数 | |
1班 | 83 | 80 | |
2班 | 83 | ||
3班 | 80 | 80 |
根据以上信息回答下列问题:
(1)请直接写出表格中,,,的值;
(2)比较这三组样本数据的平均数、中位数和众数,你认为哪个班的成绩比较好?请说明理由(一条理由即可);
(3)为了让学生重视安全知识的学习,学校将给竞赛成绩满分的同学颁发奖状,该校七年级学生共120人,试估计需要准备多少张奖状?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点C处有一个高空探测气球,从点C处测得水平地面上A,B两点的俯角分别为30°和45°.若AB=2km,则A,C两点之间的距离为_____km.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】正方形的边长为4,点在对角线上(可与点重合),,点在正方形的边上.下面四个结论中,
①存在无数个四边形是平行四边形;
②存在无数个四边形是菱形;
③存在无数个四边形是矩形;
④至少存在一个四边形是正方形.
所有正确结论的序号是_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,将纸片展平,再次折叠纸片,使点A落在EF上的点N处,并使折痕经过点B,得到折痕BM,再展平纸片,连接MN,BN.下列结论一定正确的是( )
A.B.
C.BM与EN互相平分D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是小明设计的“在已知三角形的一边上取一点,使得这点到这个三角形的另外两边的距离相等”的尺规作图过程:
已知:△ABC.
求作:点D,使得点D在BC边上,且到AB,AC边的距离相等.
作法:如图,
作∠BAC的平分线,交BC于点D.则点D即为所求.
根据小明设计的尺规作图过程,
(1)使用直尺和圆规,补全图形 (保留作图痕迹);
(2)完成下面的证明.
证明:作DE⊥AB于点E,作DF⊥AC于点F,
∵AD平分∠BAC,
∴ = ( ) (填推理的依据) .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com