精英家教网 > 初中数学 > 题目详情

【题目】有一条抛物线,三位学生分别说出了它的一些性质:
甲说:对称轴是直线x=2;
乙说:与x轴的两个交点距离为6;
丙说:顶点与x轴的交点围成的三角形面积等于9,请你写出满足
上述全部条件的一条抛物线的解析式:

【答案】y=﹣ (x﹣2)2+3或y= (x﹣2)2﹣3.
【解析】解:根据题意得:抛物线与x轴的两个交点的坐标为(﹣1,0),(5,0),顶点坐标为(2,3)或(2,﹣3),
设函数解析式为y=a(x﹣2)2+3或y=a(x﹣2)2﹣3;
把点(5,0)代入y=a(x﹣2)2+3得a=﹣
把点(5,0)代入y=a(x﹣2)2﹣3得a=
∴满足上述全部条件的一条抛物线的解析式为y=﹣ (x﹣2)2+3或y= (x﹣2)2﹣3.
根据对称轴是直线x=2,与x轴的两个交点距离为6,所以与x轴的两个交点的坐标为(-1,0),(5,0),再根据顶点与x轴的交点围成的三角形面积等于9,可得顶点的纵坐标为±3,得顶点坐标为(2,3)或(2,-3),然后利用顶点式求得抛物线的解析式即可。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在一个不透明的盒子中装有颜色不同的8个小球,其中红球3个,黑球5个.

(1)先从袋中取出m(m>1)个红球,再从袋中随机摸出1个球,将摸出黑球记为事件A.请完成下列表格:

事件A

必然事件

随机事件

m的值

(2)先从袋中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出1个球是黑球的概率是,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知:射线PO与⊙O交于A、B两点,PC、PD分别切⊙O于点C、D.

(1)请写出两个不同类型的正确结论;
(2)若CD=12,tan∠CPO= ,求PO的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】完成下列填空.

如图,已知∠B+BCD=180°,∠B=D.求证:∠E=DFE.

证明:∵∠B+BCD=180°(已知),

ABCD .

∴∠B=DCE .

又∵∠B=D(已知 ,

___________ ( 等量代换 ).

ADBE(内错角相等,两直线平行)

∴∠E=DFE .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知A、B两地相距10千米,上午9:00甲骑电动车从A地出发到B地,9:10乙开车从B地出发到A地,甲、乙两人距A 地距离y(千米)与甲所用的时间x(分)之间的关系如图所示。

(1)甲的速度是 千米/分。

(2)乙的速度是 千米/分,乙到达A地的时间是

(3)甲、乙两人相距4千米的时间是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知∠AOB90°,OC为一条射线,OEOF分别平分∠AOC,∠BOC,那么∠EOF 的度数为_____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→”方向排列,如(102021111222,根据这个规律,第2019个点的坐标为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC 中,点OAC边上的一个动点,过点O作直线MNBC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F

1)求证:EO=FO

2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将八个边长为1的小正方形摆放在平面直角坐标系中,若过原点的直线l将图形分成面积相等的两部分,则将直线l向右平移3个单位后所得直线l′的函数关系式为

查看答案和解析>>

同步练习册答案