【题目】某学校七年级共有500名学生,为了解该年级学生的课外阅读情况,将从中随机抽取的40名学生一个学期的阅读量(阅读书籍的本数)作为样本,根据数据绘制了如下的表格和统计图:
等级 | 阅读量(本) | 频数 | 频率 |
E | x≤2 | 4 | 0.1 |
D | 2<x≤4 | 12 | 0.3 |
C | 4<x≤6 | a | 0.35 |
B | 6<x≤8 | c | b |
A | x>8 | 4 | 0.1 |
根据上面提供的信息,回答下列问题:
(1)统计表中的 , ;并补全条形统计图;
(2)根据抽样调查结果,请估计该校七年级学生一学期的阅读量为“等”的有多少人?
(3)样本中阅读量为“等”的4名学生中有2名男生和2名女生,现从中随机挑选2名同学参加区里举行的“语文学科素养展示”活动,请用树状图法或列表法求出恰好选中“1男1女”的概率.
【答案】(1)14、0.15,补全图见解析;(2)50人;(3)
【解析】
(1)由总人数40×对应频率可求得a的值,用总频率减去其余各组的频率即可求得b的值,用总人数减去其余各组的人数即可求得c的值,进而补全条形统计图;
(2)利用七年级总人数乘以阅读量为“等”的频率即可得解;
(3)根据列表法可求得所有等可能的情况有12种,其中恰好抽中一男一女的情况有8种,进而得解.
解:(1)由题意知
,
,
故答案为:14、0.15;
补全图形如下:
(2)估计该校七年级学生一学期的阅读量为“A等”的有500×0.1=50(人);
(4)列表如下:
男1 | 男2 | 女1 | 女2 | |
男1 | (男1,男2) | (男1,女1) | (男1,女2) | |
男2 | (男2,男1) | (男2,女1) | (男2,女2) | |
女1 | (女1,男1) | (女1,男2) | (女1,女2) | |
女2 | (女2,男1) | (女2,男2) | (女2,女1) |
得到所有等可能的情况有12种,其中恰好抽中一男一女的情况有8种,
所以恰好选到1名男生和1名女生的概率.
科目:初中数学 来源: 题型:
【题目】某数学课外兴趣小组为了测量池塘对岸山丘上的塔的高度,在山脚下的广场处测得建筑物点(即山顶)的抑角为,沿水平方向前进245米到达点,测得建筑物顶部点的仰角为,已知山丘高182米,求塔的高度.(结果精确到0.1米,参考数据,,)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与轴交于、两点(在的左侧),与轴交于点,过点的直线:与轴交于点,与抛物线的另一个交点为,己知,,点为抛物线上一动点(不与、重合).
(1)直接写出抛物线和直线的解析式;
(2)当点在直线上方的抛物线上时,连接、,
①当的面积最大时,点的坐标是________;
②当平分时,求线段的长.
(3)设为直线上的点,探究是否存在点,使得以点、,、为顶点的四边形为平行四边形?若存在,直接写出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知函数,(为常数).
(1)当时,
①求此函数图象与轴交点坐标.
②当函数的值随的增大而增大时,自变量的取值范围为________.
(2)若已知函数经过点(1,5),求的值,并直接写出当时函数的取值范围.
(3)要使已知函数的取值范围内同时含有和这四个值,直接写出的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形中,点是对角线上一动点,连接,作分别交于点,于点 .
(1)如图1,若恰好平分,求证:;
(2)如图2,若,取的中点,连接交于点 .
求证:①;②.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数()的图象与x轴交于点A(﹣1,0),对称轴为直线x=1,与y轴的交点B在(0,2)和(0,3)之间(包括这两点),下列结论:
①当x>3时,y<0;
②3a+b<0;
③;
④;
其中正确的结论是( )
A.①③④B.①②③C.①②④D.①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知在四边形ABCD中∠A=∠ABC=90°,点E是CD的中点,△ABD与 △EBD关于直线BD对称,,.
(1)求点A和点E之间的距离;
(2)联结AC交BE于点F,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠BAC=45°,AB=4cm,将△ABC绕点B按逆时针方向旋转45°后得到△A′BC′,则阴影部分的面积为 ___________cm2 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com