8£®ÔÚÕý·½ÐÎABCDÖУ¬¹ýµãAÒýÉäÏßAH£¬½»±ßCDÓÚµãH£¨µãHÓëµãD²»Öغϣ©£®Í¨¹ý·­ÕÛ£¬Ê¹µãBÂäÔÚÉäÏßAHÉϵÄ
µãG´¦£¬ÕÛºÛAE½»BCÓÚE£¬ÑÓ³¤EG½»CDÓÚF£®
¡¾¸ÐÖª¡¿£¨1£©Èçͼ¢Ù£¬µ±µãHÓëµãCÖØºÏʱ£¬²ÂÏëFGÓëFDµÄÊýÁ¿¹ØÏµ£¬²¢ËµÃ÷ÀíÓÉ£®
¡¾Ì½¾¿¡¿£¨2£©Èçͼ¢Ú£¬µ±µãHΪ±ßCDÉÏÈÎÒâÒ»µãʱ£¬£¨1£©ÖнáÂÛÊÇ·ñÈÔÈ»³ÉÁ¢£¿²»ÐèҪ˵Ã÷ÀíÓÉ£®
¡¾Ó¦Óá¿£¨3£©ÔÚͼ¢ÚÖУ¬µ±DF=3£¬CE=5ʱ£¬Ö±½ÓÀûÓÃ̽¾¿µÄ½áÂÛ£¬ÇóABµÄ³¤£®

·ÖÎö [¸ÐÖª]Á¬½ÓAF£¬ÓÉÕÛµþµÄÐÔÖʿɵÃAB=AG=AD£¬ÔÙ½áºÏAFΪ¡÷AGFºÍ¡÷ADFµÄ¹«¹²±ß£¬´Ó¶øÖ¤Ã÷¡÷AGF¡Õ¡÷ADF£¬´Ó¶øµÃ³ö½áÂÛFD=FG£®
[̽¾¿]Á¬½ÓAF£¬¸ù¾ÝͼÐβÂÏëFD=FG£¬ÓÉÕÛµþµÄÐÔÖʿɵÃAB=AG=AD£¬ÔÙ½áºÏAFΪ¡÷AGFºÍ¡÷ADFµÄ¹«¹²±ß£¬´Ó¶øÖ¤Ã÷¡÷AGF¡Õ¡÷ADF£¬´Ó¶øµÃ³ö½áÂÛ£®
[Ó¦ÓÃ]ÉèAB=x£¬ÔòBE=EG=x-5£¬FE=x-2£¬FC=x-3£¬ÔÚRT¡÷ECFÖÐÀûÓù´¹É¶¨Àí¿ÉÇó³öxµÄÖµ£¬½ø¶ø¿ÉµÃ³ö´ð°¸£®

½â´ð [¸ÐÖª]½â£º²ÂÏëFD=FG£®
Ö¤Ã÷£ºÈçͼ1£¬Á¬½ÓAF£¬
ÓÉÕÛµþµÄÐÔÖʿɵÃAB=AG=AD£¬
ÔÚRt¡÷AGFºÍRt¡÷ADFÖУ¬
$\left\{\begin{array}{l}{AG=AD}\\{AF=AF}\end{array}\right.$£¬
¡àRt¡÷AGF¡ÕRt¡÷ADF£¨HL£©£®
¹Ê¿ÉµÃFG=FD£®

[̽¾¿]½â£º²ÂÏëFD=FG£®
Ö¤Ã÷£ºÈçͼ2£¬Á¬½ÓAF£¬
ÓÉÕÛµþµÄÐÔÖʿɵÃAB=AG=AD£¬
ÔÚRt¡÷AGFºÍRt¡÷ADFÖУ¬
$\left\{\begin{array}{l}{AG=AD}\\{AF=AF}\end{array}\right.$£¬
¡àRt¡÷AGF¡ÕRt¡÷ADF£¨HL£©£®
¹Ê¿ÉµÃFG=FD£®

[Ó¦ÓÃ]ÉèAB=x£¬ÔòBE=EG=x-5£¬FE=x-2£¬FC=x-3£¬
ÔÚRt¡÷ECFÖУ¬EF2=FC2+EC2£¬¼´£¨x-2£©2=£¨x-3£©2+52£¬
½âµÃx=15£®
¼´ABµÄ³¤Îª15£®

µãÆÀ ±¾Ì⿼²éÁË·­Õ۱任¼°Õý·½ÐεÄÐÔÖÊ£¬ÕÆÎÕ¡÷AGF¡Õ¡÷ADFʼÖÕ²»±äÊǽâ´ð±¾ÌâµÄ¹Ø¼ü£¬ÁíÍâÔÚ½øÐнáÂÛµÄÓ¦ÓÃʱ£¬µÃ³öRt¡÷EFCµÄ¸÷±ßºóÔËÓù´¹É¶¨Àí½øÐÐÇó½âʱ£¬ÒªÏ¸ÐıÜÃâ³ö´í£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®ÒÑÖª$\left\{\begin{array}{l}{2x-3y=2}\\{x+6y=7}\end{array}\right.$£¬Ôòx+yµÄÖµÊÇ3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®¶þ´Îº¯Êýy=x2+bx+cµÄͼÏóÑØxÖáÏò×óÆ½ÒÆ2¸öµ¥Î»£¬ÔÙÑØyÖáÏòÉÏÆ½ÒÆ3¸öµ¥Î»£¬µÃµ½µÄͼÏóµÄº¯Êý½âÎöʽΪy=x2-2x+1£¬ÔòbÓëc·Ö±ðµÈÓÚ£¨¡¡¡¡£©
A£®6£¬4B£®-8£¬14C£®-6£¬6D£®-8£¬-14

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®Èçͼ£¬Ö±Ïßy=$\frac{1}{2}$x+1ÓëÅ×ÎïÏßy=$\frac{1}{2}$x2-bx+l½»ÓÚ²»Í¬µÄÁ½µãM¡¢N£¨µãMÔÚµãNµÄ×ó²à£©£®
£¨1£©Ö±½Óд³öNµÄ×ø±ê£¨
2b+1£¬$\frac{b+3}{2}$£© £¨ÓÃbµÄ´úÊýʽ±íʾ£©
£¨2£©ÉèÅ×ÎïÏߵĶ¥µãΪB£¬¶Ô³ÆÖálÓëÖ±Ïßy=$\frac{1}{2}$x+1µÄ½»µãΪC£¬Á¬½áBM¡¢BN£¬ÈôS¡÷MBC=$\frac{2}{3}$S¡÷NBC£¬ÇóÅ×ÎïÏߵĽâÎöʽ£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬ÒÑÖªµãP£¨t£¬0£©ÎªxÖáÉϵÄÒ»¸ö¶¯µã£¬
¢ÙÈô¡ÏMPN=90¡ãʱ£¬ÇóµãPµÄ×ø±ê£®
¢ÚÈô¡ÏMPN£¾90¡ãʱ£¬ÔòtµÄȡֵ·¶Î§ÊÇ$\frac{5-\sqrt{11}}{2}$£¼t£¼$\frac{5+\sqrt{11}}{2}$£®
£¨4£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬ÒÑÖªµãQÊÇÖ±ÏßMNÏ·½µÄÅ×ÎïÏßÉϵÄÒ»µã£¬ÎÊQµãÊÇ·ñ´æÔÚÔÚºÏÊʵÄλÖã¬Ê¹µÃËüµ½MNµÄ¾àÀë×î´ó£¿´æÔڵϰÇó³öQµÄ×ø±ê£¬²»´æÔÚʲôÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖªÅ×ÎïÏßC1£ºy=x2-2£¨m-1£©x+m2-3m-1
£¨1£©Ö¤Ã÷£º²»ÂÛmΪºÎÖµ£¬Å×ÎïÏßͼÏóµÄ¶¥µãM¾ùÔÚijһֱÏßlµÄͼÏóÉÏ£¬Çó´ËÖ±ÏßlµÄº¯Êý½âÎöʽ£»
£¨2£©µ±m=2ʱ£¬µãPΪÅ×ÎïÏßÉÏÒ»µã£¬ÇÒ¡ÏMOP=90¡ã£¬ÇóµãPµÄ×ø±ê£»
£¨3£©½«£¨2£©ÖеÄÅ×ÎïÏßC1ÑØxÖá·­ÕÛÔÙÏòÉÏÆ½ÒÆ1¸öµ¥Î»ÏòÓÒÆ½ÒÆn¸öµ¥Î»µÃÅ×ÎïÏßC2£¬ÉèÅ×ÎïÏßC2µÄ¶¥µãΪN£¬Å×ÎïÏßC2ÓëxÖáÏཻÓÚµãA£¬B£¨AÔÚBµÄ×ó±ß£©£¬ÇÒAM¡ÎBN£¬ÇónµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®Óü¤¹â²â¾àÒDzâÁ¿Á½×ùɽ·åÖ®¼äµÄ¾àÀ룬´ÓÒ»×ùɽ·å·¢³öµÄ¼¤¹â¾­¹ý4¡Á10-5Ãëµ½´ïÁíÒ»×ùɽ·å£¬ÒÑÖª¹âËÙΪ3¡Á108Ã×/Ã룬ÔòÕâÁ½×ùɽ·åÖ®¼äµÄ¾àÀëÓÿÆÑ§¼ÇÊý·¨±íʾΪ1.2¡Á104Ã×£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÈçͼËùʾÌú·ÉÏA¡¢BÁ½Õ¾£¨ÊÓΪÁ½¸öµã£©Ïà¾à25km£¬C¡¢DΪÁ½´åׯ£¨ÊÓΪÁ½¸öµã£©£¬CA¡ÍABÓÚµãA£¬DB¡ÍABÓÚµãB£¬ÒÑÖªCA=15km£¬DB=10km£®ÏÖÒªÔÚA£®BÖ®¼ä½¨Ò»¸öÍÁÌØ²úÊÕ¹ºÕ¾E£¬µ±AE=xkmʱ
£¨1£©ÇóCE+DEµÄ³¤£®£¨Óú¬xµÄʽ×Ó±íʾ£©
£¨2£©EÔÚʲôλÖÃʱCE+DEµÄ³¤×î¶Ì£®
£¨3£©¸ù¾ÝÉÏÃæµÄ½â´ð£¬Çó$\sqrt{{x}^{2}+9}$$+\sqrt{£¨24-x£©^{2}+16}$µÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®Ö±Ïßy=$\frac{4}{3}x$ÓëÅ×ÎïÏßy=£¨x-3£©2-4m+3½»ÓÚA£¬BÁ½µã£¨ÆäÖеãAÔÚµãBµÄ×ó²à£©£¬ÓëÅ×ÎïÏߵĶԳÆÖá½»ÓÚµãC£¬Å×ÎïÏߵĶ¥µãΪD£¨µãDÔÚµãCµÄÏ·½£©£¬ÉèµãBµÄºá×ø±êΪt
£¨1£©ÇóµãCµÄ×ø±ê¼°Ïß¶ÎCDµÄ³¤£¨Óú¬mµÄʽ×Ó±íʾ£©£»
£¨2£©Ö±½ÓÓú¬tµÄʽ×Ó±íʾmÓëtÖ®¼äµÄ¹ØÏµÊ½£¨²»Ðèд³ötµÄȡֵ·¶Î§£©£»
£¨3£©ÈôCD=CB£®
¢ÙÇóµãBµÄ×ø±ê£»
¢ÚÔÚÅ×ÎïÏߵĶԳÆÖáÉÏÕÒÒ»µãF£¬Ê¹BF+$\frac{3}{5}$CFµÄÖµ×îС£¬ÔòÂú×ãÌõ¼þµÄµãFµÄ×ø±êÊÇ£¨3£¬$\frac{23}{4}$£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®Èçͼ£¬Æ½ÐÐËıßÐÎABCDÖУ¬µãEÔÚ±ßADÉÏ£¬ÒÔBEΪÕÛºÛ£¬½«¡÷ABEÕÛµþ£¬Ê¹µãAÕýºÃÓëCDÉϵÄFµãÖØºÏ£¬Èô¡÷FDEµÄÖܳ¤Îª16£¬¡÷FCBµÄÖܳ¤Îª28£¬ÔòFCµÄ³¤Îª6£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸