精英家教网 > 初中数学 > 题目详情

【题目】阅读材料:各类方程的解法

求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于去分母可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想转化,把未知转化为已知.

转化的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通过因式分解把它转化为x(x2+x-2)=0,解方程x=0x2+x-2=0,可得方程x3+x2-2x=0的解.

(1)问题:方程x3+x2-2x=0的解是x1=0,x2=x3=

(2)拓展:用转化思想求方程的解;

(3)应用:如图,已知矩形草坪ABCD的长AD=8m,宽AB=3m,小华把一根长为10m的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB段拉直并固定在点P,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP的长.

【答案】(1)-2,1;(2)x=3;(3)4m.

【解析】

(1)因式分解多项式,然后得结论;
(2)两边平方,把无理方程转化为整式方程,求解,注意验根;
(3)设AP的长为xm,根据勾股定理和BP+CP=10,可列出方程,由于方程含有根号,两边平方,把无理方程转化为整式方程,求解,

解:(1)

所以

故答案为:,1;

(2)

方程的两边平方,得

时,

所以不是原方程的解.

所以方程的解是

(3)因为四边形是矩形,

所以

,则

因为

两边平方,得

整理,得

两边平方并整理,得

所以

经检验,是方程的解.

答:的长为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,一热气球在距地面90米高的P处,观测地面上点A的俯角为60°,气球以每秒9米的速度沿AB方向移动,5秒到达Q处,此时观测地面上点B的俯角为45°.(点P,Q,A,B在同一铅直面上).

(1)若气球从Q处继续向前移动,方向不变,再过几秒位于B点正上方?

(2)求AB的长(结果保留根号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公园在一个扇形OEF草坪上的圆心O处垂直于草坪的地上竖一根柱子OA,在A处安装一个自动喷水装置.喷头向外喷水.连喷头在内,柱高m,水流在各个方向上沿形状相同的抛物线路径落下,喷出的水流在与D点的水平距离4米处达到最高点B,点B距离地面2米.当喷头A旋转120°时,这个草坪可以全被水覆盖.如图1所示.

1)建立适当的坐标系,使A点的坐标为(O),水流的最高点B的坐标为(42),求出此坐标系中抛物线水流对应的函数关系式;

2)求喷水装置能喷灌的草坪的面积(结果用π表示);

3)在扇形OEF的一块三角形区域地块△OEF中,现要建造一个矩形GHMN花坛,如图2的设计方案是使HG分别在OFOE上,MNEF上.设MN2x,当x取何值时,矩形GHMN花坛的面积最大?最大面积是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线yx+cx轴交于点A(﹣40),与y轴交于点C,抛物线y=﹣x2+bx+c经过点AC

1)求抛物线的解析式;

2)已知点P是抛物线上的一个动点,并且点P在第二象限内,过动点PPEx轴于点E,交线段AC于点D

如图1,过DDFy轴于点F,交抛物线于MN两点(点M位于点N的左侧),连接EF,当线段EF的长度最短时,求点PMN的坐标;

如图2,连接CD,若以CPD为顶点的三角形与△ADE相似,求△CPD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场以每件42元的价格购进一种服装,由试销知,每天的销量t与每件的销售价x(元)之间的函数关系为t=204-3x。

(1)试写出每天销售这种服装的毛利润y(元)与每件销售价x(元)之间的函数表达式(毛利润=销售价-进货价); 并求出自变量的取值范围。

2)每件销售价为多少元,才能使每天的毛利润最大?最大毛利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,∠C90°AC4BC3,如图1,四边形DEFGABC的内接正方形,则正方形DEFG的边长为_____.如图2,若三角形ABC内有并排的n个全等的正方形,它们组成的矩形内接于ABC,则正方形的边长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有3个完全相同的小球,把它们分别标号为123,放在一个口袋中,随机地摸出一个小球不放回,再随机地摸出一个小球.

(1) 采用树形图法(或列表法)列出两次摸球出现的所有可能结果;

(2) 求摸出的两个球号码之和等于5的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O的直径AB=10CD是⊙O的弦,ACBD相交于点P

1)设∠BPC=α,如果sinα是方程5x2-13x6=0的根,求cosα的值;

2)在(1)的条件下,求弦CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】作出反比例函数y=-的图象,并结合图象回答:(1)x2时,y的值;(2)1x≤4时,y的取值范围;(3)1≤y4时,x的取值范围.

查看答案和解析>>

同步练习册答案