精英家教网 > 初中数学 > 题目详情

【题目】如图,一热气球在距地面90米高的P处,观测地面上点A的俯角为60°,气球以每秒9米的速度沿AB方向移动,5秒到达Q处,此时观测地面上点B的俯角为45°.(点P,Q,A,B在同一铅直面上).

(1)若气球从Q处继续向前移动,方向不变,再过几秒位于B点正上方?

(2)求AB的长(结果保留根号).

【答案】(1)10秒,(2)(135﹣30)m.

【解析】

(1)首先过点BBH⊥PQ,垂足为H,即可得出QH=HB=90m,进而利用平移速度得出答案;

(2)首先过点PPE⊥AB,垂足为E,利用tan60°==,进而得出AE的长,再利用PH=BE进而得出AB的长.

解:(1)过点BBH⊥PQ,垂足为H

一热气球在距地面90米高的P处,

∴HB=90m

∵∠HQB=45°

∴∠2=45°

∴QH=HB=90m

∴90÷9=10(秒),

答:气球从Q处继续向前移动,方向不变,再过10秒位于B点正上方;

(2)过点PPE⊥AB,垂足为E

一热气球在距地面90米高的P处,

∴PE=90m

∵∠QPA=60°

∴∠1=60°

∴tan60°==

∴AE==30

气球以每秒9米的速度沿AB方向移动,5秒到达Q处,

∴PQ=5×9=45m),

∴PH=45+90=135m),

∴BE=135m),

∴AB=BE﹣AE=135﹣30m

答:AB的长为(135﹣30m

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如果把函数yx2x2)的图象和函数y的图象组成一个图象,并称作图象E,那么直线y3与图象E的交点有_____个;若直线ymm为常数)与图象E有三个不同的交点,则常数m的取值范围是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正五边形ABCDE中,对角线ACBE相交于点FF是线段BEAC的黄金分割线吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于反比例函数yk≠0),下列所给的四个结论中,正确的是(  )

A. 若点(24)在其图象上,则(﹣24)也在其图象上

B. k0时,yx的增大而减小

C. 过图象上任一点Px轴、y轴的垂线,垂足分别AB,则矩形OAPB的面积为k

D. 反比例函数的图象关于直线yxy=﹣x成轴对称

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,反比例函数的图象经过点AP,点A6),点P的横坐标是2.抛物线yax2+bx+ca≠0)经过坐标原点,且与x轴交于点B,顶点为P

求:(1)反比例函数的解析式;

2)抛物线的表达式及B点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】天塔是天津市的标志性建筑之一,某校数学兴趣小组要测量天塔的高度,如图,他们在点A处测得天塔最高点C的仰角为45°,再往天塔方向前进至点B处测得最高点C的仰角为54°,AB=112m,根据这个兴趣小组测得的数据,计算天塔的高度CD(tan36°≈0.73,结果保留整数).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点E在△ABC内,∠ABC=∠EBD=α,∠ACB=∠EDB=60°,∠AEB=150°,∠BEC=90°.

(1)当α=60°时(如图1),

①判断△ABC的形状,并说明理由;

②求证:BD=AE;

(2)当α=90°时(如图2),求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将函数y= (x-2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A′,B′,若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读材料:各类方程的解法

求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于去分母可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想转化,把未知转化为已知.

转化的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通过因式分解把它转化为x(x2+x-2)=0,解方程x=0x2+x-2=0,可得方程x3+x2-2x=0的解.

(1)问题:方程x3+x2-2x=0的解是x1=0,x2=x3=

(2)拓展:用转化思想求方程的解;

(3)应用:如图,已知矩形草坪ABCD的长AD=8m,宽AB=3m,小华把一根长为10m的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB段拉直并固定在点P,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP的长.

查看答案和解析>>

同步练习册答案