精英家教网 > 初中数学 > 题目详情

【题目】一次数学活动课上,老师留下了这样一道题“任画一个△ABC,以BC的中点O为对称中心,作△ABC的中心对称图形,问△ABC与它的中心对称图形拼成了一个什么形状的特殊四边形?并说明理由.”

于是大家讨论开了,小亮说:“拼成的是平行四边形”; 小华说:“拼成的是矩形”;

小强说:“拼成的是菱形”; 小红说:“拼成的是正方形”;其他同学也说出了自己的看法……你赞同他们中的谁的观点?为什么?若都不赞同,请说出你的观点(画出图形),并说明理由.

【答案】见解析

【解析】分析考虑问题需要从多角度出发,三角形的种类有:①等腰非直角三角形;②等腰直角三角形;③非等腰三角形;④非等腰直角三角形;根据三角形的种类我们可以知道,此题有四种情况.

详解不赞同他们的观点,因为△ABC形状不确定,所以应分情况讨论.

(1)若△ABC中,时,如图1、图2.

△ABC与它的中心对称图形拼成了一个平行四边形.

理由:∵B与C、A与D关于O对称,

∴OA=OD,OB=OC,

∴四边形ABDC是平行四边形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某村计划对总长为1800m的道路进行改造,安排甲、乙两个工程队完成.已知甲队每天能完成的道路长度是乙队每天能完成的2倍,并且在独立完成长为400m的道路时,甲队比乙队少用4天.

(1)求甲、乙两工程队每天能完成道路的长度分别是多少m?

(2)若村委每天需付给甲队的道路改造费用为0.4万元,乙队为0.25万元,要使这次的道路改造费用不超过8万元,至少应安排甲队工作多少天?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】平面直角坐标系中,存在点A(2,2),B(-6,-4),C(2,-4).则△ABC的外接圆的圆心坐标为 , △ABC的外接圆在x轴上所截的弦长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某班将买一些乒乓球和乒乓球拍.了解信息如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍.乒乓球拍每副定价30元,乒乓球每盒定价5元;经洽谈:甲店每买一副球拍赠一盒乒乓球;乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不小于5).问:

(1)当购买乒乓球x盒时,两种优惠办法各应付款多少元?(用含x的代数式表示)

(2)如果要购买15盒乒乓球时,请你去办这件事,你打算去哪家商店购买?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是某居民小区的一块面积为4ab平方米的长方形空地,准备在空地的四个顶点处修建一个半径为a米的扇形花台,在花台内种花,其余部分种草.如果建造花台及种花费用每平方米需要资金100种草每平方米需要资金50元,那么美化这块空地共需资金多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1),抛物线y=ax2+bx+c与x轴交于A(x1,0)、B(x2,0)两点(x1<0<x2),与y轴交于点C(0,-3),若抛物线的对称轴为直线x=1,且tan∠OAC=3.

(1)求抛物线的函数解析式;
(2)若点D是抛物线BC段上的动点,且点D到直线BC距离为 ,求点D的坐标
(3)如图(2),若直线y=mx+n经过点A,交y轴于点E(0, - ),点P是直线AE下方抛物线上一点,过点P作x轴的垂线交直线AE于点M,点N在线段AM延长线上,且PM=PN,是否存在点P,使△PMN的周长有最大值?若存在,求出点P的坐标及△PMN的周长的最大值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】423日是世界读书日,某校开展了书香校园”、“书香家庭的活动学校随机调查了部分学生,就你最喜欢的图书类别(只选一项)对学生作了调查统计,将调查结果统计后绘制成如下统计表和条形统计图.请根据统计图表提供的信息解答下列问题:

(1)这次随机调查了 名学生,统计表中d=

(2)假如以此统计表绘出扇形统计图,则武侠小说对应的圆心角是 °;

(3)试估计该校1500名学生中有多少名同学最喜欢文学名著类书籍?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,直角梯形ABCD中,AD∥BC∠ADC=90°AD=8BC=6,点M从点D出发,以每秒2个单位长度的速度向点A运动,同时,点N从点B出发,以每秒1个单位长度的速度向点C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点NNP⊥AD于点P,连接ACNP于点Q,连接MQ.设运动时间为t秒.

1AM= AP= .(用含t的代数式表示)

2)当四边形ANCP为平行四边形时,求t的值

3)如图2,将△AQM沿AD翻折,得△AKM,是否存在某时刻t

使四边形AQMK为为菱形,若存在,求出t的值;若不存在,请说明理由

使四边形AQMK为正方形,则AC=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点E是正方形ABCD的对角线AC上的一个动点(不与A、C重合),作EF⊥AC交边BC于点F,联结AF、BE交于点G.
(1)求证:△CAF∽△CBE;
(2)若AE:EC=2:1,求tan∠BEF的值.

查看答案和解析>>

同步练习册答案