【题目】有两个大小完全一样的长方形OABC和EFGH重合放在一起,边OA、EF在数轴上,O为数轴原点(如图1),长方形OABC的边长OA的长为6个坐标单位.
(1)数轴上点A表示的数为 .
(2)将长方形EFGH沿数轴所在直线水平移动
①若移动后的长方形EFGH与长方形OABC重叠部分的面积恰好等于长方形OABC面积的,则移动后点F在数轴上表示的数为 .
②若出行EFGH向左水平移动后,D为线段AF的中点,求当长方形EFGH移动距离x为何值时,D、E两点在数轴上表示的数是互为相反数?
【答案】(1)6;(2)①2或10.②x=4
【解析】
(1)OA=6,所以数轴上点A表示的数是6;
(2)①移动后的长方形EFGH与长方形OABC重叠部分是长方形,与长方形OABC的边AB长度一样.重叠部分的面积恰好等于长方形OABC面积的,所以重叠部分另一边是OA=2,分两种情况讨论:向左平移和向右平移.
②平移后,点E对应的数是﹣x,点F对应的数是6﹣x,根据中点坐标公式点D对应的数是6﹣0.5x,再根据互为相反数的两个数和为零,列方程解决问题.
解:(1)∵OA=6,点A在原点的右侧
∴数轴上点A表示的数是6.
故答案为:6.
(2)①移动后的长方形EFGH与长方形OABC重叠部分是长方形,与长方形OABC的边AB长度一样.重叠部分的面积恰好等于长方形OABC面积的,
所以重叠部分另一边长度是OA=2,分两种情况讨论:
当长方形EFGH向左平移时,OF=2,在原点右侧,
所以点F表示的数是2;
当长方形EFGH向右平移时.EA=2,则AF=6﹣2=4,
所以OF=OA+AF=6+4=10,点F在原点右侧,所以点F表示的数是10.
故答案为:2或10.
②长方形EFGH向左移动距离为x,则平移后,点E对应的数是﹣x,点F对应的数是6﹣x,
∵D为线段AF的中点,
∴D对应的数是=6﹣0.5x,
要使D、E两点在数轴上表示的数是互为相反数,
则﹣x+6﹣0.5x=0,
∴x=4.
科目:初中数学 来源: 题型:
【题目】全面两孩政策实施后,甲,乙两个家庭有了各自的规划.假定生男生女的概率相同,回答下列问题:
(1)甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是 ;
(2)乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为召开球类运动会,学校决定购买一批篮球和足球,若购买3个篮球和2个足球共需420元;购买2个篮球和4个足球共需440元.
(1)求篮球和足球的单价;
(2)根据实际需要,学校决定购买篮球和足球共100个,其中购买篮球的数量不少于足球数量的,学校可用于购买这批篮球和足球的资金最多为8000元.请问有几种购买方案?
(3)若购买篮球个,学校购买这批篮球和足球的总费用为元,在(2)的条件下,求哪种方案能使最小,并求出的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,函数(x<0)与y=ax+b的图象交于点A(﹣1,n)和点B(﹣2,1).
(1)求k,a,b的值;
(2)直线x=m与(x<0)的图象交于点P,与y=﹣x+1的图象交于点Q,当∠PAQ>90°时,直接写出m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于⊙C与⊙C上的一点A,若平面内的点P满足:射线AP与⊙C交于点Q(点Q可以与点P重合),且,则点P称为点A关于⊙C的“生长点”.
已知点O为坐标原点,⊙O的半径为1,点A(-1,0).
(1)若点P是点A关于⊙O的“生长点”,且点P在x轴上,请写出一个符合条件的点P的坐标________;
(2)若点B是点A关于⊙O的“生长点”,且满足,求点B的纵坐标t的取值范围;
(3)直线与x轴交于点M,与y轴交于点N,若线段MN上存在点A关于⊙O的“生长点”,直接写出b的取值范围是_____________________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲.乙两同学骑自行车从A地沿同一条路到B地,已知乙比甲先出发,他们离出发地的距离S(km)和骑行时间t(h)之间的函数关系如图1所示,给出下列说法:①他们都骑行了20km;②乙在途中停留了0.5h;③甲.乙两人同时到达目的地;④相遇后,甲的速度小于乙的速度.
根据图象信息,以上说法正确的有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.
(1)如图1,连接AF、CE.求证四边形AFCE为菱形,并求AF的长;
(2)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,
①已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.
②若点P、Q的运动路程分别为a、b(单位:cm,ab≠0),已知A、C、P、Q四点为顶点的四边形是平行四边形,求a与b满足的数量关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校开设武术、舞蹈、剪纸三项活动课程,为了了解学生对这三项活动课程的兴趣情况,随机抽取了部分学生进行调查(每人从中只能选一顶),并将调查结果绘制成下面两幅统计图,请你结合图中信息解答问题.
(1)将条形统计图补充完整;
(2)本次抽样调查的样本容量是 ;
(3)在扇形统计图中,求女生喜欢剪纸活动课程人数对应的圆心角度数;
(4)已知该校有1200名学生,求全校学生中喜欢武术的人数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com