精英家教网 > 初中数学 > 题目详情

【题目】如图,直线x轴、y轴分别交于CD两点,与双曲线在第一象限内交于点P,过点P轴于点A轴于点B,已知

直接写出直线的解析式______,双曲线的解析式______

设点Q是直线上的一点,且满足的面积是面积的2倍,请求出点Q的坐标.

【答案】(1);(2)点Q的坐标

【解析】

(1)利用待定系数法求两个函数的解析式;(2)先求得C的坐标,进而根据,求得,然后分两种情况讨论求得.

(1)x=0时,

代入得:

代入中得:

直线CD的解析式为:,双曲线的解析式为:

故答案为:

直线:x轴于点C

C的坐标是

过点Q轴于点M

分为以下两种情况:

①当点Q在射线DC上时,如图1,

的面积是面积的2倍,且有共同的底边OD

代入,得

即此时点Q的坐标是

②当点Q在射线CD上时,如图2,同理可得

代入,得

即此时点Q的坐标是

Q的坐标

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:平面直角坐标系中,把点A(m4)m是实数)向右移动7个单位向下移动2个单位得到点B,点B向左移动3个单位向上移动6个单位得到点C,请解答:

1 BC的坐标是:B C

2 ABC的面积;

3)若连接OC交线段AB于点D,且ACDBCD的面积比不超过0.75时,求m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某中学有一块四边形的空地ABCD,学校计划在空地上种植草皮,经测量∠A=90°,AB=3mBC=12mCD=13mDA=4m,若每平方米草皮需要200元,问学校需要投入多少资金买草皮?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法正确的是( )

A. 掷一枚均匀的骰子,骰子停止转动后,6点朝上是必然事件

B. 甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是S2=0.4S2=0.6,则甲的射击成绩较稳定

C. 明天降雨的概率为,表示明天有半天都在降雨

D. 了解一批电视机的使用寿命,适合用普查的方式

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AD是△ABC的中线,EF分别是ADAD延长线上的点,且DE=DF,连结BFCE.下列说法①△BDF≌△CDE;②△ABD和△ACD面积相等;③BFCE;④CE=BF.其中正确的有(  )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一次质检抽测中,随机抽取某摊位20袋食盐,测得各袋的质量分别为(单位:g):492,496,494,495,498,497,501,502,504,496,497,503,506,508,507,492,496,500,501,499,根据以上抽测结果,任买一袋该摊位的食盐,质量在497.5 g~501.5 g之间的概率为(   )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】现有一项资助贫困生的公益活动由你来主持,每位参与者需交赞助费5元,活动规则如下:如图是两个可以自由转动的转盘,每个转盘被分成6个相等的扇形,参与者转动这两个转盘,转盘停止后,指针各自指向一个数字,(若指针在分格线上,则重转一次,直到指针指向某一数字为止),若指针最后所指的数字之和为12,则获得一等奖,奖金20元;数字之和为9,则获得二等奖,奖金10元;数字之和为7,则获得三等奖,奖金为5元;其余均不得奖;此次活动所集到的赞助费除支付获奖人员的奖金外,其余全部用于资助贫困生的学习和生活;

(1)分别求出此次活动中获得一等奖、二等奖、三等奖的概率;

(2)若此次活动有2000人参加,活动结束后至少有多少赞助费用于资助贫困生?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是小章为学校举办的数学文化节没计的标志,在△ABC中,∠ACB90°,以△ABC的各边为边作三个正方形,点G落在HI上,若AC+BC6,空自部分面积为10.5,则阴影部分面积为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】著名的恩施大峡谷(A)和世界级自然保护区星斗山(B)位于笔直的沪渝高速公路X同侧,AB50kmAB到直线X的距离分别为10km40km,要在沪渝高速公路旁修建一服务区P,向AB两景区运送游客.小民设计了两种方案,图1是方案一的示意图(AP与直线X垂直,垂足为P),PAB的距离之和S1PA+PB,图2是方案二的示意图(点A关于直线X的对称点是A',连接BA交直线X于点P),PAB的距离之和S2PA+PB

1S1_____kmS2_____km

2PA+PB的最小值为_____km

3)拟建的恩施到张家界高速公路与沪渝高速公路垂直,建立如图3所示的直角坐标系,B到直线的距为30km,请你在X旁和P旁各修建一服务区PQ,使PABQ组成的四边形的周长最小,(用尺画出点P和点Q的位置)这个最小值为_____km

查看答案和解析>>

同步练习册答案