【题目】已知:平面直角坐标系中,把点A(m,4)(m是实数)向右移动7个单位向下移动2个单位得到点B,点B向左移动3个单位向上移动6个单位得到点C,请解答:
(1) 点B,C的坐标是:B ,C ;
(2) 求△ABC的面积;
(3)若连接OC交线段AB于点D,且△ACD与△BCD的面积比不超过0.75时,求m的取值范围.
【答案】(m+7,2) ,(m+4,8);(2)18;(3)
【解析】
(1)根据平面直角坐标系中点坐标的平移即可求解;
(2)利用割补法求解即可;
(3)画图分析,根据同底两个三角形的面积之比等于高之比,则△ACD与△BCD的面积比△AOC与△OBC的面积比,然后进行计算.
解:(1)点A(m,4)(m是实数)向右移动7个单位向下移动2个单位得到点B,点B的坐标为(m+7,2),点B向左移动3个单位向上移动6个单位得到点C,点C的坐标为(m+4,8);
故答案为:(m+7,2) ,(m+4,8);
(2);
(3)画图如下:
根据同底两个三角形的面积之比等于高之比,则.
∵A(m,4),B(m+7,2) ,C(m+4,8),
∴=8-2m,
=3m+24.
∴8-2m>0,3m+24>0,
解得m<4.
∵,
∴,即.
解得.
∴≤m<4.
科目:初中数学 来源: 题型:
【题目】为了了解市民“获取新闻的最主要途径”,某市记者开展了一次抽样调查,根据调查结果绘制了如下尚不完整的统计图.
根据以上信息解答下列问题:
这次接受调查的市民总人数是______;
请补全条形统计图如图;
扇形统计图如图中,“电视”所对应扇形的圆心角为______度;
若该市约有80万人,请你估计将“手机上网”作为“获取新闻的最主要途径”的总人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校在“清明节”前组织七年级全体学生进行了一次“缅怀先烈,牢记历史”知识竞赛,赛后随机抽取了部分学生成绩进行统计,制作如下频数分布表和频数分布直方图,请根据图中提供的信息,解答下列问题:
分数段表示分数 | 频数 | 频率 |
4 | ||
8 | b | |
a | ||
10 | ||
6 |
表中______,______,并补全直方图;
若用扇形统计图描述次成绩统计图分别情况,则分数段对应扇形的圆心角度数是______;
若该校七年级共900名学生,请估计该年级分数在的学生有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于点D,交AB于点E.
(1)求证:△ABD是等腰三角形;
(2)若∠A=40°,求∠DBC的度数;
(3)若AE=6,△CBD的周长为20,求△ABC的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形OABC在平面直角坐标系xOy中,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=4,OC=3,若抛物线的顶点在BC边上,且抛物线经过O,A两点,直线AC交抛物线于点D.
(1)求抛物线的解析式;
(2)求点D的坐标;
(3)若点M在抛物线上,点N在x轴上,是否存在以A,D,M,N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:已知在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.
(1)求证:DE=DF;
(2)若∠A=60°,BE=1,求△ABC的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,求BD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线与x轴、y轴分别交于C、D两点,与双曲线在第一象限内交于点P,过点P作轴于点A,轴于点B,已知且
直接写出直线的解析式______,双曲线的解析式______;
设点Q是直线上的一点,且满足的面积是面积的2倍,请求出点Q的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com