【题目】如图,在中,,AD是中线,E是AD的中点,过点A作交BE的延长线于F,连接CF.
求证:;
如果,试判断四边形ADCF的形状,并证明你的结论.
【答案】(1)见解析;(2)四边形ADCF是正方形,理由见解析
【解析】
试题(1)由E是AD的中点,AF∥BC,易证得△AEF≌△DEB,即可得AD=BD,又由在△ABC中,∠BAC=90°,AD是中线,根据直角三角形斜边的中线等于斜边的一半,即可证得AD=BD=CD=BC,即可证得:AD=AF;(2)由AF=BD=DC,AF∥BC,可证得:四边形ADCF是平行四边形,又由AB=AC,根据三线合一的性质,可得AD⊥BC,AD=DC,继而可得四边形ADCF是正方形.
试题解析:()∵,
∴,
∵是的中点,
∴,
在和中,
,
∴≌,
∴,
∵在中,,是中线,
∴,
∴.
()四边形是正方形,
∵,,
∴四边形是平行四边形,
∵,是中线,
∵,
∵,
∴四边形是正方形.
科目:初中数学 来源: 题型:
【题目】已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E三点在同一直线上,连接BD.
(1)求证:△BAD≌△CAE;
(2)请判断BD、CE有何大小、位置关系,并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,C、F为⊙O上两点,且点C为弧BF的中点,过点C作AF的垂线,交AF的延长线于点E,交AB的延长线于点D.
(1)求证:DE是⊙O的切线;
(2)如果半径的长为3,tanD=,求AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)观察推理:如图1,△ABC中,∠ACB=90°,AC=BC,直线l过点C,点A、B在直线l同侧,BD⊥l,AE⊥l,垂足分别为D、E.求证:△AEC≌△CDB;
(2)类比探究:如图2,Rt△ABC中,∠ACB=90°,AC=6,将斜边AB绕点A逆时针旋转90°至AB′,连接B′C,求△AB′C的面积.
(3)拓展提升:如图3,等边△EBC中,EC=BC=4cm,点O在BC上,且OC=3cm,动点P从点E沿射线EC以2cm/s速度运动,连结OP,将线段OP绕点O逆时针旋转120°得到线段OF.要使点F恰好落在射线EB上,求点P运动的时间ts.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】正方形ABCD中,点P为直线AB上一个动点不与点A,B重合,连接DP,将DP绕点P旋转得到EP,连接DE,过点E作CD的垂线,交射线DC于M,交射线AB于N.
问题出现:当点P在线段AB上时,如图1,线段AD,AP,DM之间的数量关系为______;
题探究:当点P在线段BA的延长线上时,如图2,线段AD,AP,DM之间的数量关系为______;
当点P在线段AB的延长线上时,如图3,请写出线段AD,AP,DM之间的数量关系并证明;
问题拓展:在的条件下,若,,则______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点A(m-4,m+1)在x轴上,将点A右移8个单位,上移4个单位得到点B.
(1)则m= ;B点坐标( );
(2)连接AB交y轴于点C,则= ;
(3)点D是x轴上一点,△ABD的面积为12,求D点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:平面直角坐标系中,把点A(m,4)(m是实数)向右移动7个单位向下移动2个单位得到点B,点B向左移动3个单位向上移动6个单位得到点C,请解答:
(1) 点B,C的坐标是:B ,C ;
(2) 求△ABC的面积;
(3)若连接OC交线段AB于点D,且△ACD与△BCD的面积比不超过0.75时,求m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点A(m-4,m+1)在x轴上,将点A右移8个单位,上移4个单位得到点B.
(1)则m= ;B点坐标( );
(2)连接AB交y轴于点C,则= ;
(3)点D是x轴上一点,△ABD的面积为12,求D点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法正确的是( )
A. 掷一枚均匀的骰子,骰子停止转动后,6点朝上是必然事件
B. 甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定
C. “明天降雨的概率为”,表示明天有半天都在降雨
D. 了解一批电视机的使用寿命,适合用普查的方式
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com