精英家教网 > 初中数学 > 题目详情

【题目】如图,已知BCAC,圆心OAC上,点M与点C分别是AC与⊙O的交点,点DMB与⊙O的交点,点PAD延长线与BC的交点,且ADAOAMAP

1)连接OP,证明:ADM∽△APO

2)证明:PD是⊙O的切线;

3)若AD12AMMC,求PBDM的值.

【答案】1)见解析;(2)见解析;(3PB6DM2

【解析】

1)根据两边对应成比例,且夹角相等的两三角形相似证明即可.

2)首先证明ODP≌△OCPSAS),可得∠ODP=∠OCP,则∠ODP90°,证出ODPA即可解决问题.

3)连接CD.由(1)可知:PCPD,由AMMC,推出AM2MO2R,在RtAOD中,OD2+AD2OA2,可得R2+1229R2,推出R3,推出OD3MC6,由,可得DP的长度,再根据中点及勾股定理求出MB的长度,最后利用相似三角形的性质求出DM即可解决问题.

1)证明:连接ODOPCD

ADAOAMAP

,∠A=∠A

∴△ADM∽△APO

2)证明:∵△ADM∽△APO

∴∠ADM=∠APO

MDPO

∴∠DOP=∠MDO,∠POC=∠DMO

ODOM

∴∠DMO=∠MDO

∴∠DOP=∠POC

OPOPODOC

∴△ODP≌△OCPSAS),

∴∠ODP=∠OCP

BCAC

∴∠ODP=∠OCP90°

ODAP

PD是⊙O的切线.

3)解:连接ODOPCD,设圆的半径为R

∵△ODP≌△OCP

PCPD

AMMC

AM2MO2R

RtAOD中,OD2+AD2OA2

R2+1229R2

R3

OD3MC6

AP18

DPAPAD18126

OMC的中点,MBPO,

∴点PBC的中点,

PBCPDP6

MC是⊙O的直径,

∴∠BDC=∠CDM90°

RtBCM中,

BC2DP12MC6

BM6

∴△BCM∽△CDM

,即

DM2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系内,抛物线x轴交于点AC(点A在点C的左侧),与y轴交于点B,顶点为D.Q为线段BC的三等分点(靠近点C.

1)点M为抛物线对称轴上一点,点E为对称轴右侧抛物线上的点且位于第一象限,当的周长最小时,求面积的最大值;

2)在(1)的条件下,当的面积最大时,过点E轴,垂足为N,将线段CN绕点C顺时针旋转90°得到点N,再将点N向上平移个单位长度.得到点P,点G在抛物线的对称轴上,请问在平面直角坐标系内是否存在一点H,使点DPGH构成菱形.若存在,请直接写出点H的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司计划投资万元引进一条汽车配件流水生产线,经过调研知道该流水生产线的年产量为件,每件总成本为万元,每件出厂价万元;流水生产线投产后,从第年到第年的维修、保养费用累计(万元)如下表:

···

维修、保养费用累计万元

···

若上表中第年的维修、保养费用累计(万元)的数量关系符合我们已经学过的一次函数、二次函数、反比例函数中某一个.

1)求出关于的函数解析式;

2)投产第几年该公司可收回万元的投资?

3)投产多少年后,该流水线要报废(规定当年的盈利不大于维修、保养费用累计即报费)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市为了缓解城市交通压力,决定修建人行天桥,原设计天桥的楼梯与地面的夹角为45°(∠ABC=45°),BC=4.2 m,后考虑安全因素,将楼梯角B移到CB的延长线上点D处,使∠ADC=23°(如图所示).求BD的长(精确到0.1 m).(参考数据:sin 67°≈0.92cos 67°≈0.39tan 67°≈2.36

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系中,点A1的坐标为(12),以O为圆心,OA1长为半径画弧,交直线yx于点B1.过点B1B1A2y轴交直线y2x于点A2,以O为圆心,OA2长为半径画弧,交直线y═x于点B2;过点B2B2A3y轴交直线y2x于点A3,以点O为圆心,OA3长为半径画弧,交直线yx于点B3;……按如此规律进行下去,点B2020的坐标为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为1的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点O,则tanAOD=________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线yaxm2+2mm0)经过原点,其顶点为P,与x轴的另一交点为A

1P点坐标为   A点坐标为   ;(用含m的代数式表示)

2)求出am之间的关系式;

3)当m0时,若抛物线yaxm2+2m向下平移m个单位长度后经过点(11),求此抛物线的表达式;

4)若抛物线yaxm2+2m向下平移|m|个单位长度后与x轴所截的线段长,与平移前相比有什么变化?请直接写出结果.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线yax2bxc(a≠0)的对称轴为直线x1,与x轴的一个交点坐标为(-10),其部分图象如图所示,下列结论:① 4ac<b2;② 方程ax2bxc0的两个根分别是x1-1x23;③ 3ac>0;④当 y>0时,x的取值范围是-1<x<3;⑤ x<0时,yx的增大而增大.其中正确的结论序号有_____________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD对角线ACBD交于点O,边AB=6AD=8,四边形OCED为菱形,若将菱形OCED绕点O旋转一周,旋转过程中OE与矩形ABCD的边的交点始终为M,则线段ME的长度可取的整数值为___________________

查看答案和解析>>

同步练习册答案