精英家教网 > 初中数学 > 题目详情

【题目】阅读下列材料,然后回答问题.

在进行二次根式的化简与运算时,我们有时会碰上如一样的式子,其实我们还可以将其进一步化简: 以上这种化简的步骤叫做分母有理化.

学习数学,最重要的是学习数学思想,其中一种数学思想叫做换元的思想,它可以简化我们的计算,比如我们熟悉的下面这个题:已知 ab2ab 3 ,求 a2 b2 .我们可以把abab看成是一个整体,令 xab y ab ,则 a 2 b2 (a b)2 2ab x2 2y 4 610.这样,我们不用求出ab,就可以得到最后的结果.

1)计算:

2)已知 m 是正整数, a b 2a2 1823ab 2b2 2019 .求 m

3)已知,则的值为

【答案】1;(22;(39

【解析】

1)先将式子的每一项进行分母有理化,再计算即可;

2)先求出的值,再用换元法计算求解即可;

3)先利用计算得出的值,再对进行变形求解即可;

解:(1)原式

2)∵a b

2a2 1823ab 2b2 2019

∴2

m 是正整数

m=2

(3)由得出

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示:已知∠ABC=120°,作等边△ACD,将△ACD旋转60°,得到△CDEAB=3,BC=2,求BD和∠ABD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,∠BAC=60°,∠ABC=45°,AB=4,D是线段BC上的一个动点,以AD为直径作⊙O分别交ABACEF,连结EF,则线段EF长度的最小值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知动点P在边长为1的正方形ABCD的内部,点P到边AD、AB的距离分别为m、n.

(1)A为原点,以边AB所在直线为x轴,建立平面直角坐标系,如图①所示,当点P在对角线AC上,且m=时,求点P的坐标;

(2)如图②,当m、n满足什么条件时,点PDAB的内部?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若n是一个两位正整数,且n的个位数字大于十位数字,则称n为“两位递增数”(如13,35,56等).在某次数学趣味活动中,每位参加者需从由数字1,2,3,4,5,6构成的所有的“两位递增数”中随机抽取1个数,且只能抽取一次.

(1)写出所有个位数字是5的“两位递增数”;

(2)请用列表法或树状图,求抽取的“两位递增数”的个位数字与十位数字之积能被10整除的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,广场上一个立体雕塑由两部分组成,底座是一个正方体,正上方是一个球体,且正方体的高度和球的高度相等.当阳光与地面的夹角成60°时,整个雕塑在地面上的影子AB长2米,求这个雕塑的高度.(结果精确到百分位,参考数据:≈1.73)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为θ(0°<θ<180°),得到△A'B'C

(1)如图1,当ABCB'时,设A'B'与CB相交于点D,求证:△A'CD是等边三角形.

(2)若EAC的中点,PA'B'的中点,则EP的最大值是多少,这时旋转角θ为多少度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:

售价x(元/千克)

50

60

70

销售量y(千克)

100

80

60

(1)求yx之间的函数表达式;

(2)设商品每天的总利润为W(元),则当售价x定为多少元时,厂商每天能获得最大利润?最大利润是多少?

(3)如果超市要获得每天不低于1350元的利润,且符合超市自己的规定,那么该商品每千克售价的取值范围是多少?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知一次函数 yx﹣3 与反比例函数 y的图象相交于点 A(4,n),与 x 轴相交于点 B

(1)求 n k 的值;

(2)以 AB 为边作菱形 ABCD,使点 C x 轴正半轴上,点 D 在第一象限,求点 D 的坐标;

(3)观察反比例函数y=的图象,当 y>﹣2 时,请直接写出自变量 x 的取值范围.

查看答案和解析>>

同步练习册答案