精英家教网 > 初中数学 > 题目详情

【题目】如图,正方形ABCD中,点EF分别在BCCD上,△AEF是等边三角形,连接ACEFG,下列结论:

BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤SCEF=2SABE.其中正确结论有(  )个.

A. 4 B. 3 C. 2 D. 1

【答案】A

【解析】

通过条件可以得出ABE≌△ADF,从而得出∠BAE=DAFBE=DF,由正方形的性质就可以得出EC=FC,就可以得出AC垂直平分EF,设EC=xBE=y,由勾股定理就可以得出xy的关系,表示出BEEF,利用三角形的面积公式分别表示出SCEF2SABE,再通过比较大小就可以得出结论.

∵四边形ABCD是正方形,
AB=BC=CD=AD,∠B=BCD=D=BAD=90°
∵△AEF等边三角形,
AE=EF=AF,∠EAF=60°
∴∠BAE+DAF=30°
RtABERtADF中,

,

RtABERtADFHL),
BE=DF(故①正确).
BAE=DAF
∴∠DAF+DAF=30°
即∠DAF=15°(故②正确),
BC=CD
BC-BE=CD-DF,即CE=CF
AE=AF
AC垂直平分EF.(故③正确).
EC=x,由勾股定理,得:

,

,

,

,

,

,(故④错误),

,

,

,,(故⑤正确).
综上所述,正确的有4个,
故选:C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB 是⊙O 的直径,C 的中点,CEAB 于点 EBD CE 于点 F

(1)求证:CFBF

(2)若 CD=6,AC=8,求⊙O 的半径及 CE 的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】折纸飞机是我们儿时快乐的回忆,现有一张长为290mm,宽为200mm的白纸,如图所示,以下面几个步骤折出纸飞机:(说明:第一步:白纸沿着EF折叠,AB边的对应边AB′与边CD平行,将它们的距离记为x;第二步:将EMMF分别沿着MHMG折叠,使EMMF重合,从而获得边HGAB′的距离也为x),则PD=______mm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线yax2+bx+3x轴交于点A30),B(﹣10),与y轴交于点C

1)求抛物线的解析式;

2)点P是直线AC上方的抛物线上一动点(异于点AC),连接BCACPAPBPBAC交于点D,设点P的横坐标为m

①若CBDDAP的面积分别为S1S2,当S1S2最小时,求点P的坐标;

②过点Px轴的垂线,交AC于点E.以原点O为旋转中心,将线段PE顺时针旋转90°,得到线段PE.当线段PE与直线PE有交点时,设交点为F,求交点F的路径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形中, 中点,连接. 动点从点出发沿边向点运动,动点从点出发沿边向点运动,两个动点同时出发,速度都是每秒1个单位长度,连接,设运动时间为(秒). _____时,为直角三角形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线经过A-10)、C0-3)两点,与x轴交于另一点B.

1)求此抛物线的解析式;

2)已知点D 在第四象限的抛物线上,求点D关于直线BC对称的点D’的坐标;

3)在(2)的条件下,连结BD,问在x轴上是否存在点P,使,若存在,请求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线yax2+bx+ca≠0)经过原点,

1)当顶点坐标为(22)时,求此函数的解析式;

2)继续探究,如果b≠0,且抛物线顶点坐标为(mm),m≠0,求此函数的解析式(用含m的式子表示)

3)现有一组过原点的抛物线,顶点A1A2An在直线yx上,横坐标依次为12nn为正整数,且n≤12),分别过每个顶点作x轴的垂线,垂足记为B1B2Bn,以线段AnBn为边向右作正方形AnBnnDn,若这组抛物线中有一条经过Dn,求所有满足条件的正方形边长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】廊桥是我国古老的文化遗产,如图,是某座抛物线型的廊桥示意图.已知水面AB40米,抛物线最高点C到水面AB的距离为10米,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E,F处要安装两盏警示灯,求这两盏灯的水平距离EF.(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形中的三个顶点在⊙上,是优弧上的一个动点(不与点重合).

(1)当圆心内部,时,________.

(2)当圆心内部,四边形为平行四边形时,求的度数;

(3)当圆心外部,四边形为平行四边形时,请直接写出的数量关系.

查看答案和解析>>

同步练习册答案