精英家教网 > 初中数学 > 题目详情

【题目】1的长方形ABCD中,E点在AD上,且BE=2AE.今分别以BE、CE为折线,将A、DBC的方向折过去,图2为对折后A、B、C、D、E五点均在同一平面上的位置图.若图2中,∠AED=15°,则∠BCE的度数为何?(  )

A. 30 B. 32.5 C. 35 D. 37.5

【答案】D

【解析】

根据直角三角形30°角所对的直角边等于斜边的一半可得△ABE、△A′BE皆为30°、60°、90° 的三角形所以∠AEB=60°,再根据平角等于180°求出∠AED′=60°即可求得∠DED′=75°,然后根据翻折变换的性质求出∠2=37.5°,再根据两直线平行,内错角相等解答.

如图,

根据题意得:∵BE=2AE=2A′E,∠A=∠A′=90°,

∴△ABE、△A′BE皆为30°、60°、90° 的三角形,

∴∠1=∠AEB=60°,

∴∠AED′=180°﹣∠1﹣∠AEB=180°﹣60°﹣60°=60°,

∴∠DED′=∠AED+∠AED′=15°+60°=75°,

∴∠2=∠DED′=37.5°,

∵A′D′∥BC,

∴∠BCE=∠2=37.5°.

故选D.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】感知:如图1,AD平分∠BAC.∠B+∠C=180°,∠B=90°,易知:DB=DC.

探究:如图2,AD平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°,求证:DB=DC.

应用:如图3,四边形ABCD中,∠B=45°,∠C=135°,DB=DC=a,则AB﹣AC= (用含a的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,D是△ABC的边BC上一点,AB=4,AD=2,∠DAC=∠B.如果△ABD的面积为15,那么△ACD的面积为( )
A.15
B.10
C.
D.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有一列按一定顺序和规律排列的数:
第一个数是
第二个数是
第三个数是

对任何正整数n,第n个数与第(n+1)个数的和等于
(1)经过探究,我们发现:
设这列数的第5个数为a,那么 ,哪个正确?
请你直接写出正确的结论;
(2)请你观察第1个数、第2个数、第3个数,猜想这列数的第n个数(即用正整数n表示第n数),并且证明你的猜想满足“第n个数与第(n+1)个数的和等于 ”;
(3)设M表示 ,…, ,这2016个数的和,即
求证:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,O为坐标原点,ABC的边BCx轴上,AC两点的坐标分别为A(0,m),Cn,0),B(﹣5,0),且(n﹣3)2+ =0.一动点P从点B出发,以每秒2单位长度的速度沿射线BO匀速运动,设点P运动的时间为ts.

(1)求AC两点的坐标;

(2)连接PA,若PAB为等腰三角形,求点P的坐标;

(3)当点P在线段BO上运动时,在y轴上是否存在点Q,使POQAOC全等?若存在,请求出t的值并直接写出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我国汉代数学家赵爽为了证明勾股定理,创制了一副弦图,后人称其为赵爽弦图(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1S2S3,若S1+S2+S3=10,则S2的值是_________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ACB中,∠ACB=90°,D、E为斜边AB上的两点,且BD=BC,AE=AC,∠DCE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABC中,AC=BC=2,正方形CDEF的顶点D,F分别在AC,BC边上,设CD的长度为x,△ABC与正方形CDEF重叠部分的面积为y,则下列图象中能表示y与x之间的函数关系的是(

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】西安市在创建文明城区的活动中,有两个长度相等的彩色砖道铺设任务,分别交给甲、乙两个施工队同时进行施工,如图是反映所铺设的彩色砖道的长度y(米)与施工时间x(小时)之间关系的部分图象,请解答下列问题:

(1)求乙队在0x6的时段内yx的函数关系式.

(2)如果甲队施工速度不变,乙队在施工6小时后,施工速度增加到12/小时,结果两队同时完成了任务,求甲队从开始施工到完成所铺设的彩色砖道的长度为多少米?

查看答案和解析>>

同步练习册答案