【题目】若△ABC的三边长分别是a、b、c,且a、b、c满足(a+b)2-2ab=c2,则△ABC为________三角形.
科目:初中数学 来源: 题型:
【题目】某大桥采用低塔斜拉桥桥型(如甲图),图乙是从图甲引申出的平面图,假设你站在桥上测得拉索AB与水平桥面的夹角是30°,拉索CD与水平桥面的夹角是60°,两拉索顶端的距离BC为2米,两拉索底端距离AD为20米,请求出立柱BH的长.(结果精确到0.1米, ≈1.73)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线经过A(﹣1,0),B(3,0),C(0, )三点.
(1)求抛物线的解析式;
(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;
(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,∠ABC=72°.
(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);
(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】九年级七班“数学兴趣小组”对函数的对称变换进行探究,以下是探究发现运用过程,请补充完整.
(1)操作发现
在作函数y=|x|的图象时,采用了分段函数的办法,该函数转化为y=,请在如图1所示的平面直角坐标系中作出函数的图象;
(2)类比探究
作函数y=|x-1|的图象,可以转化为分段函数y=,然后分别作出两段函数的图象.聪明的小昕利用坐标平面上的轴对称知识,把函数y=x-1在x轴下面部分,沿x轴进行翻折,与x轴上及上面部分组成了函数y=|x-1|的图象,如图2所示;
(3)拓展提高
如图3是函数y=x2-2x-3的图象,请在原平面直角坐标系作函数y=|x2-2x-3|的图象;
(4)实际运用
①函数y=|x2-2x-3|的图象与x轴有 个交点,对应方程|x2-2x-3|=0有 个实根;
②函数y=|x2-2x-3|的图象与直线y=5有 个交点,对应方程|x2-2x-3|=5有 个实根;
③函数y=|x2-2x-3|的图象与直线y=4有 个交点,对应方程|x2-2x-3|=4有 个实根;
④关于x的方程|x2-2x-3|=a有4个实根时,a的取值范围是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△OAC中,以点O为圆心、OA长为半径作⊙O,作OB⊥OC交⊙O于点B,连接AB交OC于点D,∠CAD=∠CDA.
(1)判断AC与⊙O的位置关系,并证明你的结论;
(2)若OA=10,OD=2,求线段AC的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com