【题目】如图AB是⊙O的直径,点C为⊙O上一点,AE和过点C的切线互相垂直,垂足为E,AE交⊙O于点D,直线EC交AB的延长线于点P,连接AC,BC,PC=2PB.
(1)探究线段PB,AB之间的数量关系,并说明理由;
(2)若AD=3,求AB长.
【答案】
(1)解:线段PB,AB之间的数量关系为:AB=3PB.
理由:∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠BAC+∠ABC=90°,
∵OB=OC,
∴∠OCB=∠ABC,
∵∠PCB+∠OCB=90°,
∴∠PCB=∠PAC,
∵∠P是公共角,
∴△PCB∽△PAC,
∴ = ,
∴PC2=PBPA,
∵PB:PC=1:2,
∴PC=2PB,
∴PA=4PB,
∴AB=3PB;
(2)解:过点O作OH⊥AD于点H,则AH= AD= ,四边形OCEH是矩形,
∴OC=HE,
∴AE= +OC,
∵OC∥AE,
∴△PCO∽△PEA,
∴ = ,
∵AB=3PB,AB=2OB,
∴OB= PB,
∴ = = ,
∴OC= ,
∴AB=5,
【解析】(1)利用切线性质定理可证出∠PCB=∠PAC,再加上∠P是公共角,得出△PCB∽△PAC,对应边成比例可得出PA=4PB,即AB=3PB;(2)证出△PCO∽△PEA,得出对应边成比例,求出半径OC=2.5,进而求出直径AB=5.
【考点精析】解答此题的关键在于理解切线的性质定理的相关知识,掌握切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径.
科目:初中数学 来源: 题型:
【题目】某中学初三(1)班共有40名同学,在一次30秒跳绳测试中他们的成绩统计如下表:
跳绳数/个 | 81 | 85 | 90 | 93 | 95 | 98 | 100 |
人 数 | 1 | 2 | 8 | 11 | 5 |
将这些数据按组距5(个)分组,绘制成如图的频数分布直方图(不完整).
(1)将表中空缺的数据填写完整,并补全频数分布直方图;
(2)这个班同学这次跳绳成绩的众数是个,中位数是个;
(3)若跳满90个可得满分,学校初三年级共有720人,试估计该中学初三年级还有多少人跳绳不能得满分.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一条直线上依次有A,B,C三个海岛,某海巡船从A岛出发沿直线匀速经B岛驶向C岛,执行海巡任务,最终达到C岛.设该海巡船行驶x(时)后,与B港的距离为y(海里),y与x之间的函数图象如图所示.
(1)A,C两港口间的距离为海里,a=
(2)求y与x之间的函数关系式.
(3)在B岛上有一个不间断发射信号的信号发射台,发射的信号覆盖半径为8海里的圆形区域,求该海巡船鞥接受到该信号的时间有多长?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A,B的坐标分别为A(1,0)、B(3,0).抛物线y=x2﹣2mx+m2﹣4的顶点为P,与y轴的交点为Q.
(1)填空:点P的坐标为;点Q的坐标为(均用含m的代数式表示)
(2)当抛物线经过点A时,求点Q的坐标.
(3)连接QA、QB,设△QAB的面积为S,当抛物线与线段AB有公共点时,求S与m之间的函数关系式.
(4)点P、Q不重合时,以PQ为边作正方形PQMN(P、Q、M、N分别按顺时针方向排列).当正方形PQMN的四个顶点中,位于x轴两侧或y轴两侧的顶点个数相同时,直接写出此时m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将边长为4的正方形纸片ABCD折叠,使得点A落在边CD的中点E处,折痕为FG,点F、G分别在边AD、BC上,则折痕FG的长度为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】相传,大禹治水时,洛水中出现了一个“神龟”背上有美妙的图案,史称“洛书”,用现在的数字翻译出来,就是三阶幻方.三阶幻方是最简单的幻方,又叫九宫格,它是由九个数字组成的一个三行三列的矩阵.其对角线、横行、纵向的数字之和均相等,这个和叫做幻和,正中间那个数叫中心数,如图(1)是由、、、、、、、、所组成的一个三阶幻方,其幻和为,中心数为.如图(2)是一个新三阶幻方,该新三阶幻方的幻和为的倍,且,则_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,等边三角形ABC放置在平面直角坐标系中,已知A(0,0)、B(6,0),反比例函数的图象经过点C.
(1)求点C的坐标及反比例函数的解析式.
(2)将等边△ABC向上平移n个单位,使点B恰好落在双曲线上,求n的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3(a≠0)与x轴交于点A(﹣2,0)、B(4,0)两点,与y轴交于点C.
(1)求抛物线的解析式;
(2)点P从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点Q从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动,当△PBQ存在时,求运动多少秒使△PBQ的面积最大,最大面积是多少?
(3)当△PBQ的面积最大时,在BC下方的抛物线上存在点K,使S△CBK:S△PBQ=5:2,求K点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知∠1=∠2,要得到△ABD≌△ACE,从下列条件中补选一个,则错误的是( )
A.AB=AC B.DB=EC C.∠ADB=∠AEC D.∠B=∠C
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com