分析 (1)由正方形的性质可得DC=DA.∠A=∠B=∠C=∠ADC=90°,由折叠的性质得出∠DFE=∠C,DC=DF,∠1=∠2,再求出∠DFG=∠A,DA=DF,然后由“HL”证明Rt△DGA≌Rt△DGF,由全等三角形对应角相等得出∠3=∠4,得出∠2+∠3=45°即可;
(2)①由折叠的性质和线段中点的定义可得CE=EF=BE,∠DEF=∠DEC,再由三角形的外角性质得出∠5=∠DEC,然后利用同位角相等,两直线平行证明即可;
②设AG=x,表示出GF、BG,根据点E是BC的中点求出BE、EF,从而得到GE的长度,再利用勾股定理列出方程求解即可;
解答 (1)解:如图1所示:![]()
∵四边形ABCD是正方形,
∴DC=DA.∠A=∠B=∠C=∠ADC=90°,
∵△DEC沿DE折叠得到△DEF,
∴∠DFE=∠C,DC=DF,∠1=∠2,
∴∠DFG=∠A=90°,DA=DF,
在Rt△DGA和Rt△DGF中,
$\left\{\begin{array}{l}{DG=DG}\\{DA=DF}\end{array}\right.$,
∴Rt△DGA≌Rt△DGF(HL),
∴∠3=∠4,
∴∠EDG=∠3+∠2=$\frac{1}{2}$∠ADF+$\frac{1}{2}$∠FDC,
=$\frac{1}{2}$(∠ADF+∠FDC),
=$\frac{1}{2}$×90°,
=45°;
(2)①证明:如图2所示:![]()
∵△DEC沿DE折叠得到△DEF,E为BC的中点,
∴CE=EF=BE,∠DEF=∠DEC,
∴∠5=∠6,
∵∠FEC=∠5+∠6,
∴∠DEF+∠DEC=∠5+∠6,
∴2∠5=2∠DEC,
即∠5=∠DEC,
∴BF∥DE;
②解:设AG=x,则GF=x,BG=6-x,
∵正方形边长为6,E为BC的中点,
∴CE=EF=BE=$\frac{1}{2}$×6=3,
∴GE=EF+GF=3+x,
在Rt△GBE中,根据勾股定理得:(6-x)2+32=(3+x)2,
解得:x=2,
即线段AG的长为2.
点评 本题考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理、翻折变换的性质;熟练掌握正方形的性质,并能进行推理论证与计算是解决问题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 15%-5%=x | B. | 15%-5%=2x | C. | (1-5%)(1+15%)=2(1+x) | D. | (1-5%)(1+15%)=(1+x)2 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{3}{5}$ | B. | -3 | C. | 9 | D. | -$\frac{9}{5}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\root{3}{6}$<1 | B. | $\root{3}{-8}$=$\root{3}{8}$ | C. | $\sqrt{15}$>4 | D. | $\sqrt{3}$-2>-$\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com