精英家教网 > 初中数学 > 题目详情

【题目】如图,正六边形ABCDEF的边长为2,现将它沿AB方向平移1个单位,得到正六边形A′B′C′D′E′F′,则阴影部分A′BCDE′F′的面积是(  )

A.3B.4C.D.2

【答案】B

【解析】

连接A′E′BD,过F′F′HA′E′H,得到四边形A′E′DB是矩形,解直角三角形得到F′H1A′H,求得A′E′2,根据矩形和三角形的面积公式即可得到结论.

解:连接A′E′BD,过F′F′HA′E′H

则四边形A′E′DB是矩形,

∵正六边形ABCDEF的边长为2,∠A′F′E′120°

∴∠F′A′E′30°

F′H1A′H

A′E′2

∵将它沿AB方向平移1个单位,

A′B1

∴阴影部分A′BCDE′F′的面积=SA′F′E′+S矩形A′E′DB+SBCD×2×1+1×24

故选:B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在四边形ABCD中,BCCD,连接ACBD,∠ADB90°.

1)如图1,若ADBDBC,过点DDFAB于点F,交AC于点E

DAC  °;

求证:ECEA+ED

2)如图2,若ACBD,求∠DAC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题探究,

(1)如图①,在矩形ABCD中,AB2ADPCD边上的中点,试比较∠APB和∠ADB的大小关系,并说明理由;

(2)如图②,在正方形ABCD中,PCD上任意一点,试问当P点位于何处时∠APB最大?并说明理由;

问题解决

(3)某儿童游乐场的平面图如图③所示,场所工作人员想在OD边上点P处安装监控装置,用来监控OC边上的AB段,为了让监控效果最佳,必须要求∠APB最大,已知:∠DOC60°OA400米,AB200米,问在OD边上是否存在一点P,使得∠APB最大,若存在,请求出此时OP的长和∠APB的度数;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是O的直径,点C是O上一点,点D在BA的延长线上,CD与O交于另一点E,DE=OB=2,D=20°,则弧BC的长度为(  )

A. π B. π C. π D. π

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①所示,直线L:yax10ax轴负半轴、y轴正半轴分别交于AB两点.

1)当OAOB时,试确定直线L的解析式;

2)在(1)的条件下,如图②所示,设QAB延长线上一点,作直线OQ,过AB两点分别作AMOQMBNOQN,若AM8,BN6,求MN的长.

3)当a取不同的值时,点By轴正半轴上运动,分别以OBAB为边,点B为直角顶点在第一、二象限内作等腰直角OBF和等腰直角ABE,连接EFy轴于P点,如图③,问:当点By轴正半轴上运动时,试猜想PB的长是否为定值,若是,请求出其值,若不是,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着人们的生活水平的提高,家用轿车越来越多地进入家庭.小明家买了一辆小轿车,他连续记录了7天中每天行驶的路程(如下表),以50km为标准,多于50km的记为“+”,不足50km的记为“﹣”,刚好50km的记为“0”.

第一天

第二天

第三天

第四天

第五天

第六天

第七天

路程(km)

﹣9

﹣13

0

﹣14

﹣16

+33

+19

(1)求出这7天的行驶路程中最多的一天比最少的一天多行驶多少千米?

(2)若每行驶100km需用汽油8升,每升汽油6.5元,计算小明家这7天的汽油费用共是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+ca≠0)与x轴交于(-10),(30)两点,则下列说法:①abc0;②a-b+c=0;③2a+b=0;④2a+c0;⑤若Ax1y1),Bx2y2),Cx3y3)为抛物线上三点,且-1x1x21x33,则y2y1y3,其中正确的结论是(  )

A.

B.

C.

D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数的图象与x轴的一个交点为B(4,0),另一个交点为A,且与y轴相交于C点

(1)求m的值及C点坐标;

(2)在直线BC上方的抛物线上是否存在一点M,使得它与B,C两点构成的三角形面积最大,若存在,求出此时M点坐标;若不存在,请简要说明理由

(3)P为抛物线上一点,它关于直线BC的对称点为Q

①当四边形PBQC为菱形时,求点P的坐标;

②点P的横坐标为t(0t4),当t为何值时,四边形PBQC的面积最大,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在某一路段,规定汽车限速行驶,交通警察在此限速路段的道路上设置了监测区,其中点CD为监测点,已知点CDB在同一直线上,且ACBCCD400米,tanADC2,∠ABC35°

1)求道路AB段的长(结果精确到1米)

2)如果道路AB的限速为60千米/时,一辆汽车通过AB段的时间为90秒,请你判断该车是否是超速,并说明理由;参考数据:sin35°≈0.5736cos35°≈0.8192tan35°≈0.7002

查看答案和解析>>

同步练习册答案