【题目】如图,在矩形纸片ABCD中,AB=4,BC=4,点E是AB的中点,点F是AD边上的一个动点,将△AEF沿EF所在直线翻折,得到△A'EF,连接A'C,A'D,则当△A'DC是以A'D为腰的等腰三角形时,FD的长是_____.
【答案】4﹣2或3
【解析】
存在两种情况:当A′D=DC,连接ED,勾股定理求得ED的长,可判断E,A′,D三点共线,根据勾股定理即可得到结论;当A′D=A′C,证明AEA′F是正方形,于是得到结论.
解:①当A′D=DC时,如图1,连接ED,
∵点E是AB的中点,AB=4,BC=4,四边形ABCD是矩形,
∴AD=BC=4,∠A=90°,
∴DE==6,
∵将△AEF沿EF所在直线翻折,得到△A'EF,
∴A′E=AE=2,
∵A′D=DC=AB=4,
∴DE=A′E+A′D=6,
∴点E,A′,D三点共线,
∵∠A=90°,
∴∠FA′E=∠FA′D=90°,
设AF=x,则A′F=x,FD=4-x,
在Rt△FA′D中,42+x2=(4-x)2,
解得:x=,
∴FD=3;
②当A′D=A′C时,如图2,
∵A′D=A′C,
∴点A′在线段CD的垂直平分线上,
∴点A′在线段AB的垂直平分线上,
∵点E是AB的中点,
∴EA′是AB的垂直平分线,
∴∠AEA′=90°,
∵将△AEF沿EF所在直线翻折,得到△A'EF,
∴∠A=∠EA′F=90°,AF=FA′,
∴四边形AEA′F是正方形,
∴AF=AE=2,
∴DF=4-2,
故答案为:4-2或3.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A的坐标为(m,0),m<0,点B与点A 关于原点对称,直线与双曲线交于C,D两点.
(1)直接判断后填空:四边形ACBD的形状一定是 ;
(2)若点D(1,t),求双曲线的解析式;
(3)在(2)的前提下,四边形ACBD为矩形时,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,ABC内接于⊙O,AB为⊙O的直径,∠ACB的平分线CD交⊙O于点D,过点D作⊙O的切线PD,交CA的延长线于点P,过点A作AE⊥CD于点E,过点B作BF⊥CD于点F.
(1)求证:PD//AB;
(2)求证:DE=BF;
(3)若AC=6,tan∠CAB=,求线段PC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A在反比例函数(x<0)的图象上,连接OA,分别以点O和点A为圆心,大于的长为半径作弧,两弧相交于B,C两点,过B,C两点作直线交x轴于点D,连接AD.若∠AOD=30°,△AOD的面积为2,则k的值为( )
A.﹣6B.6C.﹣2D.﹣3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰△ABC中,AB=BC.CD∥AB,点D在点C的右侧,点A,E关于直线BD对称,CE交BD于点F,AE交DB延长线于点G.
(1)(猜想)
如图①,当∠ABC=90°时,∠EFG=________;
(2)(探究)
在(1)的前提下,若AB=4,CD=1,求EF的长;
(3)(应用)
如图②,当∠ABC=120°时,若EF=2 ,AB=2,则CD=________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在学习《圆》这一单元时,我们学习了圆周角定理的推论:圆内接四边形的对角互补;事实上,它的逆命题:对角互补的四边形的四个顶点共圆,也是一个真命题.在图形旋转的综合题中经常会出现对角互补的四边形,那么,我们就可以借助“对角互补的四边形的四个顶点共圆”,然后借助圆的相关知识来解决问题,例如:
已知:是等边三角形,点是内一点,连接,将线段绕逆时针旋转得到线段,连接,,,并延长交于点.当点在如图所示的位置时:
(1)观察填空:
①与全等的三角形是________;
②的度数为
(2)利用题干中的结论,证明:,,,四点共圆;
(3)直接写出线段,,之间的数量关系.____________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)化简:(2x+1)(2x﹣1)+(x+1)(1﹣2x).
(2)如图,在四边形ABCD中,AB⊥BC,E,F,M分别是AD,DC,AC的中点,连接EF,BM,求证:EF=BM.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+3的图象与反比例函数的图象交于P、Q两点,PA⊥x轴于点A,一次函数的图象分别交x轴、y轴于点C、点B,其中OA=6,且.
(1)求一次函数和反比例函数的表达式;
(2)求△APQ的面积;
(3)根据图象写出当x取何值时,一次函数的值小于反比例函数的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com