精英家教网 > 初中数学 > 题目详情

【题目】定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.

1)如图1,在中,的角平分线,分别是上的点.求证:四边形是邻余四边形.

2)如图2,在的方格纸中,在格点上,请画出一个符合条件的邻余四边形,使是邻余线,在格点上.

3)如图3,在(1)的条件下,取中点,连结并延长交于点,延长于点.的中点,,求邻余线的长.

【答案】(1)证明见解析;(2)画图见解析;(3)10.

【解析】

1AB=ACADABC的角平分线,又ADBC,则∠ADB=90°,则∠FBA与∠EBA互余,即可求解;

2)如图所示(答案不唯一),四边形AFEB为所求;

3)证明DBQ∽△ECN,即可求解.

1)解:∵的角平分线,

.

.

.

互余.

∴四边形是邻余四边形.

2)解:如图所示(答案不唯一)

3)解:∵的角平分线,

.

,

.

.

,中点,

.

.

,

.

.

.

,.

,

.

.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,边长为的正方形的两顶点分别在轴、轴的正半轴上,点在原点.现将正方形点顺时针旋转, 轴相交于点,如图,当时,点的坐标为( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,点B(-1,4),点A(-7,0),点P是直线上一点,且∠ABP=45°,则点P的坐标为____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数的最大值为4,且该抛物线与轴的交点为,顶点为.

1)求该二次函数的解析式及点的坐标;

2)点轴上的动点,

的最大值及对应的点的坐标;

②设轴上的动点,若线段与函数的图像只有一个公共点,求的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,中,,点在边上,.是线段上一动点,当半径为6的圆的一边相切时,的长为________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校的甲、乙两位老师同住一小区,该小区与学校相距2400. 甲从小区步行去学校,出发10分钟后乙再出发,乙从小区先骑公共自行车,途经学校义骑行若干米到达还车点后,立即步行走回学校. 已知甲步行的速度比乙步行的速度每分钟快5. 设甲步行的时间为(),图1中线段和折线分别表示甲、乙离开小区的路程()与甲步行时间()的函数关系的图象;图2表示甲、乙两人之间的距离()与甲步行时间()的函数关系的图象(不完整).根据图1和图2中所给信息,解答下列问题:

(1)求甲步行的速度和乙出发时甲离开小区的路程;

(2)求乙骑自行车的速度和乙到达还车点时甲、乙两人之间的距离;

(3)在图2中,画出当关于的函数的大致图象. (温馨提示:请画在答题卷相对应的图上)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】箭头四角形,模型规律:如图1,延长COAB于点D,则.因为凹四边形ABOC形似箭头,其四角具有“”这个规律,所以我们把这个模型叫做“箭头四角形”.模型应用:

1)直接应用:

①如图2

②如图32等分线(即角平分线)交于点F,已知,则

③如图4分别为2019等分线.它们的交点从上到下依次为.已知,则

2)拓展应用:如图5,在四边形ABCD中,O是四边形ABCD内一点,且.求证:四边形OBCD是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解某校九年级全体男生1000米跑步的成绩,随机抽取了部分男生进行测试,并将测试成绩分为四个等级,绘制如下不完整的统计图表,如题图表所示,根据图表信息解答下列问题:

成绩等级频数分布表

成绩等级

频数

A

24

B

10

C

x

D

2

合计

y

成绩等级扇形统计图

1x=______y=______,扇形图中表示的圆心角的度数为______度;

2)甲、乙、丙是等级中的三名学生,学校决定从这三名学生中随机抽取两名介绍体育锻炼经验,用列表法或画树状图法,求同时抽到甲、乙两名学生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,顶点为的二次函数图象与x轴交于点,点B在该图象上,交其对称轴l于点M,点MN关于点P对称,连接

1)求该二次函数的关系式.

2)若点B在对称轴l右侧的二次函数图象上运动,请解答下列问题:

①连接,当时,请判断的形状,并求出此时点B的坐标.

②求证:

查看答案和解析>>

同步练习册答案