精英家教网 > 初中数学 > 题目详情

【题目】1)如图,的边上一点,且分别是的中点,分别是的中点,求证:.

2)若(1)中的,其它条件不变,求的值.

【答案】1)见解析;(2.

【解析】

(1) 连接EGFG,根据三角形中位线定理可得,EG=ABFG=CD,又因为CD=AB,所以EG=FG,又因为HEF的中点,根据三线合一可得结果;(2)根据中位线定理可得:EGAB FGCD,又因为∠ABC=90°,所以∠EGF=90°,即GEF是等腰直角三角形,所以再根据斜边上的中线等于斜边的一半即可解答.

1)连接EGFG

EG分别是BDAD的中点,

EG=AB

同理,FG=CD

CD=AB

EG=FG

HEF的中点,

GHEF

2)∵EG分别是BDAD的中点,

EGAB,同理FGCD

又∠ABC=90°

∴∠EGF=90°

HEF的中点,

GH=EF

=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点EF分别在BCCD上,下列结论:CE=CF②∠AEB=75°BE+DF=EFS正方形ABCD=

其中正确的序号是   (把你认为正确的都填上).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个寻宝游戏的寻宝通道如图①所示,通道由在同一平面内的AB,BC,CA,OA, OB,OC组成。为记录寻宝者的行进路线,在BC的中点M处放置了一台定位仪器,设寻宝者行进的时间为x,寻宝者与定位仪器之间的距离为y,若寻宝者匀速行进,且表示y与x的函数关系的图像大致如图②所示,则寻宝者的行进路线可能为:

A. A→O→B B. B→A→C C. B→O→C D. C→B→O

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某产品的年产量不超过100万件,该产品的生产费用y(万元)与年产量x(万件)之间的函数图象是顶点在原点的抛物线的一部分(如图①所示);该产品的销售单价z(元/件)与年销售量x(万件)之间的函数图象是如图②所示的一条线段,生产出的产品都能在当年销售完,达到产销平衡,所获毛利润为w万元.(毛利润=销售额-生产费用)

1)请直接写出yx以及zx之间的函数关系式;

2)求wx之间的函数关系式;并求年产量多少万件时,所获毛利润最大?最大毛利润是多少?

3)由于受资金的影响,今年投入生产的费用不会超过360万元,今年最多可获得多少万元的毛利润?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某校教学楼AB的后面有一建筑物CD,在距离CD的正后方30米的观测点P处,以22°的仰角测得建筑物的顶端C恰好挡住教学楼的顶端A,而在建筑物CD上距离地面3米高的E处,测得教学楼的顶端A的仰角为45°,求教学楼AB的高度.(参考数据:sin22° ,cos22°≈,tan22°≈

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】据《北京晚报》介绍,自2009年故宫博物院年度接待观众首次突破1000万人次之后,每年接待量持续增长,到2018年突破1700万人次,成为世界上接待量最多的博物馆.特别是随着《我在故宫修文物》、《上新了,故宫》等一批电视文博节目的播出,社会上再次掀起故宫热.于是故宫文创营销人员为开发针对不同年龄群体的文创产品,随机调查了部分参观故宫的观众的年龄,整理并绘制了如下统计图表.

2018年参观故宫观众年龄频数分布表

年龄x/

频数/人数

频率

20≤x30

80

b

30≤x40

a

0.240

40≤x50

35

0.175

50≤x60

37

c

合计

200

1.000

1)求表中abc的值;

2)补全频数分布直方图;

3)从数据上看,年轻观众(20≤x40)已经成为参观故宫的主要群体.如果今年参观故宫人数达到2000万人次,那么其中年轻观众预计约有 万人次.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,中,分别是的中点.

求证:四边形是菱形

如果,求四边形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点是菱形边上的一个动点,点从点出发,沿的方向匀速运动到停止,过点垂直直线于点,已知,设点走过的路程为,点到直线的距离为(当点与点或点重合时,的值为

小腾根据学习函数的经验,对函数随自变量的变化规律进行了探究,下面是小腾的探究过程,请补充完整;

1)按照下表中自变量的值进行取点,画图,测量,分别得到了以下几组对应值;

2)在同一平面直角坐标系中,描出补全后的表中各组数值所对应的点,并画出函数的图像;

3)结合函数图像,解决问题,当点到直线的距离恰为点走过的路程的一半时,点P走过的路程约是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DF,连接CE、AF.

(1)证明:AF=CE;

(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.

查看答案和解析>>

同步练习册答案