【题目】在Rt△ABC中,∠CAB=90°,AC=AB=6,D,E分别是AB,AC的中点,若等腰Rt△ADE绕点A逆时针旋转,得到Rt△AD1E1,设旋转角为α(0<α≤180°),记直线BD1与CE1的交点为P.
(1)如图1,当α=90°时,线段BD1的长等于 ,线段CE1的长等于 ;
(2)如图2,当α=135°时,设直线BD1与CA的交点为F,求证:BD1=CE1,且BD1⊥CE1;
(3)点P到AB所在直线的距离的最大值是 .
【答案】(1)当α=90°时,线段BD1的长等于,线段CE1的长等于;
(2)证明见解析;
(3)点P到AB所在直线的距离的最大值是.
【解析】试题分析:(1)利用等腰直角三角形的性质结合勾股定理分别得出BD1的长和E1C的长;
(2)根据旋转的性质得出,∠D1AB=∠E1AC=135°,进而求出△D1AB≌△E1AC(SAS),即可得出答案;(3)首先作PG⊥AB,交AB所在直线于点G,则D1,E1在以A为圆心,AD为半径的圆上,当B D1所在直线与⊙A相切时,直线B D1与C E1的交点P到直线AB的距离最大,此时四边形A D1P E1是正方形,进而求出PG的长.
试题解析:(1)∵∠CAB=90°,AC=AB=6,D,E分别是边AB,AC的中点,
∴AE=AD=3,
∵等腰Rt△ADE绕点A逆时针旋转,得到等腰Rt△AD1E1,设旋转角为α(0<α≤180°),
∴当α=90°时,AE1=3,∠E1AE=90°,
∴BD1==3,E1C==3;
故答案为:3,3;
(2)证明:当α=135°时,如图2,连接CE1,
∵Rt△AD1E是由Rt△ADE绕点A逆时针旋转135°得到,
∴AD1=AE1,∠D1AB=∠E1AC=135°,
在△D1AB和△E1AC中
,
∴△D1AB≌△E1AC(SAS),
∴BD1=CE1,且∠D1BA=∠E1CA,
记直线BD1与AC交于点F,
∴∠BFA=∠CFP,
∴∠CPF=∠FAB=90°,
∴BD1⊥CE1;
(3)解:如图3,作PG⊥AB,交AB所在直线于点G,
∵D1,E1在以A为圆心,AD为半径的圆上,
∴当BD1所在直线与⊙A相切时,直线BD1与CE1的交点P到直线AB的距离最大,
此时四边形AD1PE1是正方形,PD1=3,则BD1==3,
故∠ABP=30°,
则PB=3+3,
故点P到AB所在直线的距离的最大值为:PG=,
故答案为:.
科目:初中数学 来源: 题型:
【题目】已知某新型感冒病毒的直径约为0.000000823米,将0.000000823用科学记数法表示为( )
A. 8.23×10﹣6 B. 8.23×10﹣7 C. 8.23×106 D. 8.23×107
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某一次函数的图象经过点(-1,2),且经过第一、二、三象限,请你写出一个符合上述条件的函数关系式_____________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】世界杯足球赛正在巴西如火如荼地进行,赛前有人预测,巴西国家队夺冠的概率是90%.对他的说法理解正确的是( )
A.巴西队一定会夺冠
B.巴西队一定不会夺冠
C.巴西队夺冠的可能性很大
D.巴西队夺冠的可能性很小
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校七年级学生到野外活动,为测量一池塘两端A,B的距离,甲、乙、丙三位同学分别设计出如下几种方案:
甲:如图①,先在平地取一个可直接到达A,B的点C,再连接AC,BC,并分别延长AC至D,BC至E,使DC=AC,EC=BC,最后测出DE的长即为A,B的距离.
乙:如图②,先过点B作AB的垂线BF,再在BF上取C,D两点,使BC=CD,接着过点D作BD的垂线DE,交AC的延长线于点E,则测出DE的长即为A,B的距离.
丙:如图③,过点B作BD⊥AB,再由点D观测,在AB的延长线上取一点C,使∠BDC=∠BDA,这时只要测出BC的长即为A,B的距离.
(1)以上三位同学所设计的方案,可行的有;
(2)请你选择一可行的方案,说说它可行的理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com