【题目】如图,在平面直角坐标系中,反比例函数的图像与边长是6的正方形的两边,分别相交于,两点.
(1)若点是边的中点,求反比例函数的解析式和点的坐标;
(2)若,求直线的解析式及的面积
【答案】(1),N(3,6);(2)y=-x+8,S△OMN=16.
【解析】
(1)求出点M坐标,利用待定系数法即可求得反比例函数的解析式,把N点的纵坐标代入解析式即可求得横坐标;
(2)根据M点的坐标与反比例函数的解析式,求得N点的坐标,利用待定系数法求得直线MN的解析式,根据△OMN=S正方形OABC-S△OAM-S△OCN-S△BMN即可得到答案.
解:(1)∵点M是AB边的中点,∴M(6,3).
∵反比例函数y=经过点M,∴3=.∴k=18.
∴反比例函数的解析式为y=.
当y=6时,x=3,∴N(3,6).
(2)由题意,知M(6,2),N(2,6).
设直线MN的解析式为y=ax+b,则
,
解得,
∴直线MN的解析式为y=-x+8.
∴S△OMN=S正方形OABC-S△OAM-S△OCN-S△BMN=36-6-6-8=16.
科目:初中数学 来源: 题型:
【题目】已知:如图,梯形中,,,,动点在射线上,以为半径的交边于点(点与点不重合),联结、,设,.
(1)求证:;
(2)求关于的函数解析式,并写出定义域;
(3)联结,当时,以为圆心半径为的与相交,求的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,双曲线经过矩形OABC的边BC的中点E,交AB于点D.设点B的坐标为(m,n).
(1)直接写出点E的坐标,并求出点D的坐标;(用含m,n的代数式表示)
(2)若梯形ODBC的面积为,求双曲线的函数解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是由7个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体( )
A. 主视图改变,俯视图改变 B. 左视图改变,俯视图改变
C. 俯视图不变,左视图改变 D. 主视图不变,左视图不变
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】《中学生体质健康标准》规定学生体质健康等级标准为:90分及以上为优秀;80分~89分为良好;60分~79分为及格;59分及以下为不及格. 某校从九年级学生中随机抽取了的学生进行了体质测试,得分情况如下图.
(1)在抽取的学生中不及格人数所占的百分比是 ,它的圆心角度数为 度.
(2)小明按以下方法计算出抽取的学生平均得分是:. 根据所学的统计知识判断小明的计算是否正确,若不正确,请计算正确结果.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校九年级数学小组在课外活动中,研究了同一坐标系中两个反比例函数与 在第一象限图象的性质,经历了如下探究过程:
操作猜想:
(1)如图①,当,时,在轴的正方向上取一点作轴的平行线交于点,交于点.当时,________,________,________;当时,________,________,________;当时,猜想________.
数学思考:
(2)在轴的正方向上任意取点作轴的平行线,交于点、交于点,请用含、的式子表示的值,并利用图②加以证明.
推广应用:
(3)如图③,若,,在轴的正方向上分别取点、 作轴的平行线,交于点、,交于点、,是否存在四边形是正方形?如果存在,求的长和点的坐标;如果不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,对角线AC与BD交于点O,在Rt△PFE中,∠EPF=90°,点E、F分别在边AD、AB上.
(1)如图1,若点P与点O重合:①求证:AF=DE;②若正方形的边长为2,当∠DOE=15°时,求线段EF的长;
(2)如图2,若Rt△PFE的顶点P在线段OB上移动(不与点O、B重合),当BD=3BP时,证明:PE=2PF.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com